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Abstract
We introduce “generative regulatory measurement,” using Large Language Mod-
els to interpret administrative documents with 96% accuracy in binary classi-
fication and 0.87 correlation for continuous questions. Owur analysis of U.S.
zoning regulations reveals four facts: (1) Housing regulations are multidimen-
sional with two main principal components. (2) The first principal component
represents value capture in high housing demand areas. (3) The second prin-
cipal component associates with exclusionary zoning, increasing housing costs
and socioeconomic exclusion. (4) Zoning follows a monocentric pattern with
regional variations and is especially strict in Northeast suburbs. We develop a

model of municipal regulatory choice consistent with these facts.
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1 Introduction

Housing regulations govern the built environment of American cities, dictating the
form and extent of residential development and housing affordability (Glaeser and Gy-
ourko, 2018; Gyourko et al., 2008). The influence of zoning laws and land use policies
extends far beyond the real estate market, with implications for segregation, economic
mobility, the environment, urban agglomeration, and construction sector productiv-
ity (Gyourko and Molloy, 2015; Kahn, 2000; Hsieh and Moretti, 2019; D’Amico et
al., 2023). Despite their importance, accurately measuring housing regulations re-
mains a challenge due to the complexity and variety of municipal ordinances. These
measurement gaps hinder our ability to understand housing regulation’s drivers and
impacts.

Our paper argues that advances in Large language Models (LLMs) enable scal-
able and accurate classification of regulatory documents, a task that we refer to as
generative requlatory measurement. We obtain municipal codes for 63% of the popula-
tion covered by municipal zoning ordinances, and develop an LLM-powered algorithm
to estimate housing regulation using these documents. Our approach builds on the
Retrieval Augmented Generation (RAG) architecture, adding prompt-engineering,
prompt chaining, and detailed background information on zoning. We apply this
methodology to a set of regulatory questions initially developed by the Pioneer Insti-
tute for Massachusetts (Glaeser and Ward, 2009), and benchmark our LLM-generated
regulatory categorizations against human-coded measurements from this same study.

Our results indicate that LLMs have achieved near-human rates of precision in
classifying regulation, with an accuracy rate of 96% for binary questions and a corre-
lation of 0.87 with the correct answer for continuous questions. We manually verify
a subset of housing regulations in California to ensure that our results are not geo-
graphically biased. We also expand the original Pioneer classification by incorporating
additional questions on housing process regulations, and verify high accuracy on this
new set of measures. We use the resulting dataset on national housing regulations to
establish four key facts about housing regulation.

First, housing regulation is multidimensional, and the variation is not well sum-
marized by a single dimension measuring regulatory stringency. This contrasts with
prior analysis which has largely focused on a unidimensional distinction between re-

gions with stricter or less strict land use regulation (Gyourko et al., 2021). Using



a variety of statistical tests, we find that the first two principal components of our
regulatory questions explain the bulk of the systematic variation across regulations,
with the remainder due to a long tail of idiosyncratic factors.

Second, we argue that the first principal component can be interpreted as captur-
ing the extent to which the municipality is engaging in value capture. This component
is associated with high prices and high construction, suggesting regulations that allow
development but exact value in high-demand environments. Consistent with this in-
terpretation, this component loads heavily on regulations that allow local governments
to extract and redistribute housing surplus, such as inclusionary zoning mandates that
require developers to include affordable units. These regulations are typically found
in densely populated, centrally located cities that tend to support Democratic po-
litical candidates. These regulations are higher in areas with higher amenities—as
measured in terms of consumption (retail establishments), natural amenities (such
as good weather or proximity to bodies of water), and productive spillovers (patents
per capita and job density). The strong correlation with diverse amenity measures
suggests these regulations emerge precisely in locations with the most valuable land
and highest development potential. Rather than completely blocking all develop-
ment, these regulations impose implicit taxes on new construction for the purposes
of redistribution and funding local public goods.

Third, we connect the second principal component to exclusionary zoning practices
aimed at limiting density and affordable housing options. This component associates
with high prices but low construction, indicating regulations that restrict housing
supply. This dimension loads heavily on bulk regulations, such as minimum lot size
requirements, as well as procedural barriers to development. Among single-family
zoned areas in municipalities across the country, 66% have town-wide minimum lot
size requirements above 5,000 square feet, 17% of requirements are above 10,000
square feet, and 7% have requirements exceeding half an acre. These tools are par-
ticularly prevalent in affluent, predominantly white suburban areas that tend to lean
Republican relative to other areas in their metropolitan area. We find a strong asso-
ciation between these regulatory measures and indicators of local school performance
and social mobility, suggesting a role for educational sorting. Unlike value capture
regulations that allow for development with conditions, these exclusionary practices
directly left-truncate the housing distribution through regulations that effectively

require households to consume a minimum quantity of housing. These regulations



intensify economic and racial segregation by effectively pricing out lower-income and
minority households from neighborhoods with desirable public goods, particularly
high-performing schools.

Fourth and finally, we find that housing regulation varies within metropolitan
areas in ways that are broadly consistent with a monocentric city model (Alonso,
1964; Muth, 1971). As standard monocentric city models predict, denser building is
generally allowed in city centers, with stricter bulk regulations and lower density re-
quirements found in inner-ring suburbs. However, we also observe substantial sorting
of high-income households into expensive suburbs with higher minimum size require-
ments. This is in contrast to the most basic models in which all households, regardless
of income, are assumed to prefer central locations to minimize commuting costs. Our
findings suggest a more complicated spatial pattern, with some peripheral suburban
locations able to maintain high prices and a high share of afluent households through
stricter zoning. This pattern is particularly pronounced in the Northeast, which has
substantially more onerous bulk regulation requirements than other regions of the
country. This pattern is driven by the fact that low-density areas around historic
industrial centers in the Northeast (and to a lesser extent the Midwest) adopted
disproportionately strict bulk regulations. We suggest possible drivers for this re-
sult, such as regulatory mitigations against pollutants and social exclusionary factors
against workers in industrial hubs.

We develop a model of inter-municipal competition to interpret these facts. In
the model, local governments strategically and non-cooperatively select between two
sets of housing regulations: one associated with value capture and the other with
exclusionary zoning through the imposition of minimum housing requirements. Our
framework builds on a literature examining Tiebout sorting and local goods provision
(Tiebout, 1956; Epple and Zelenitz, 1981), as well as theories of zoning focused on
housing sorting across public goods regimes (Fischel, 1987; Brueckner, 1995; Hamil-
ton, 1975), but generates distinct predictions about regulatory behavior that are
consistent with our empirical results.

The model predicts that metropolitan cores with high amenities will implement
value capture regulations. These regulations act as implicit taxes on housing devel-
opment (similar to rent-seeking behavior in other municipal contexts as in Diamond
(2017)), with the seized housing surplus redistributed to residents in the form of pub-

lic goods provisioning. In contrast, the model predicts that suburban areas will adopt



exclusionary regulations to generate more tax revenue from a concentrated pool of
affluent households. Exclusionary zoning is less attractive to municipalities that are
too large to be filled primarily with the most affluent households. This leads to a spa-
tial equilibrium in which suburbs are home to higher-income residents, while poorer
households concentrate in urban areas.

Our paper makes four primary contributions to the literature. First, our key
methodological contribution lies in developing a general-purpose approach to mea-
sure the content of regulatory documents and quantify the accuracy and reliability
of the resulting classifications. A long-standing literature has used text analysis to
extract measures of sentiment from firm or policymaker communications (Romer and
Romer, 2004; Tetlock, 2007; Hassan et al., 2019; Lopez-Lira and Tang, 2023). More
recently, researchers have begun to use LLMs to collect more detailed data from lit-
erary, financial, regulatory, and legal documents (Dell, 2025; Giesecke, 2023; Lagakos
et al., 2025; Jha et al., 2023; Yang, 2023; Bybee, 2023; Hansen and Kazinnik, 2023;
Hoffman and Arbel, 2023). However, existing research on Al models emphasizes both
their promise in analyzing textual data (Zhao et al., 2023), as well as challenges
with undesirable Al features such as “hallucination” and manufactured model output
(Azamfirei et al., 2023). We show that when coupled with careful text selection,
prompting, and background information, LLMs can be used to parse complicated
regulatory documents with high fidelity.

In addition to high accuracy rates, our approach offers several other advantages.
It provides unprecedented scalability at low cost: we successfully apply our regulatory
classification measure across thousands of municipalities, a task that would be expen-
sive and time-consuming for human analysts. Our approach also ensures verifiability
and auditability by prompting the LLM to provide specific supporting text from the
regulatory documents, enabling independent verification of classifications. Finally,
our approach is highly adaptable, allowing researchers to easily incorporate changes
in regulatory interpretations or advancements in Al models, facilitating replication
and refinement of measurements over time. The broad applicability of our approach
extends to various domains where textual analysis is crucial, including building codes,
tax regulations, legal cases, financial reports, newspapers, and other uses. This ver-
satility is particularly valuable as the volume and complexity of regulations continue
to increase (Singla, 2023).

Our second contribution is the production of a novel dataset on housing regulation



across the United States. Survey-based approaches to measuring zoning regulations
nationally, such as the Wharton Regulatory Index (Gyourko et al., 2008, 2021; Huang
and Tang, 2012), offer broad coverage on housing regulations, but are limited by low
and potentially biased response rates, fixed questionnaires, and inaccuracy by respon-
dents (Lewis and Marantz (2019)). Another approach imputes zoning regulations
using wedge-based approaches that measure the expected spatial macroeconomic dis-
tortions resulting from zoning (see Turner et al. (2014), Hsieh and Moretti (2019),
Glaeser et al. (2005), Herkenhoff et al. (2018), Babalievsky et al. (2021), and Du-
ranton and Puga (2019)), references to zoning regulations in court cases (Ganong
and Shoag (2017)), or newspaper articles (Stacy et al. (2023)). These imputation
approaches provide insights on the general importance of zoning regulations, but are
more limited in determining which regulations matter or bind. Another branch of the
literature conducts more detailed analysis of regulations at the local level, sacrificing
generalizability for more granularity (see e.g. Quigley and Raphael (2005), Thlanfeldt
(2007), Glaeser and Ward (2009), Jackson (2016), Shanks (2021)).

Existing research therefore leaves significant gaps in our understanding of their
measurement, and impacts. Our approach provides detailed measures of zoning reg-
ulations for over 5,800 municipalities, more than twice as many municipalities as
previous national studies such as the Wharton Regulatory Index, while providing as
much granularity as local studies such as the Pioneer Institute study.!

Third, our key economic contribution is to exploit these rich data to provide a more
nuanced portrait of zoning regulations than was previously possible, showing that
zoning regulations are not well-summarized by one dimensional indices of stringency
and that municipalities enact disparate regulatory regimes that vary dramatically
across space depending on municipal circumstances. Previous research has often
either focused on analysis of individual regulations (Gyourko and McCulloch, 2023;
Cui, 2024) or has focused on uni-dimensional indices of regulatory stringency (Quigley
and Raphael, 2005; Thlanfeldt, 2007; Gyourko et al., 2008; Glaeser and Ward, 2009;

Jackson, 2016).? Rather than relying on aggregate indices or indirect measures, we

Mleczko and Desmond (2023) use a non-LLM natural language processing (NLP) approach to
measure a set of zoning regulations for municipalities covered by the Wharton Regulatory Index
(Gyourko et al., 2008), about 2600 in total, less than half the size of our sample. Their approach
requires more manual input than ours, reducing its scalability, and the accuracy level is unclear
because they do not compare their measures to a test dataset not used in training.

20ne notable exception is Mayer and Somerville (2000) which classifies regulations based on
whether they add costs, delays, or uncertainty and measure the extent to which these three indices



directly measure specific provisions, allowing us to distinguish between value capture
tools in urban cores (like inclusionary zoning mandates) and exclusionary practices
in suburbs (like minimum lot size requirements). The size and coverage of our data
allow us to explore how these distinct regulatory approaches vary within metropolitan
areas: high demand urban areas use value extraction regulations to extract some of the
surplus generated by high amenities, while suburban regulations maintain exclusivity
through density restrictions.

Fourth, our theory contribution is to develop a model of non-cooperative regula-
tion choice by local governments who have access to multiple zoning instruments to
explain the zoning patterns we observed in our data. This model shows that large,
high amenity municipalities will be more likely to choose extractive zoning regula-
tions, while small, outlying municipalities, with lower amenities will be more likely
to choose exclusionary regulations. These predictions help unite disparate aspects of
the theoretical literature on zoning, which has discussed how zoning regulations can
be used to create efficient public goods provision and sorting (Tiebout, 1956; Fischel,
1987; Hamilton, 1975, 1976), lead to segregation (Rothstein, 2017; Cui, 2024), and

function as distortionary taxes (Zodrow and Mieszkowski, 1986).

2 Construction of National Database

In this section, we describe the institutional background and data sources on mu-
nicipal zoning codes, describe our approach to generative regulatory measurement in
classifying these codes at scale, provide evidence on the accuracy of our approach,

and discuss the scalability and replicability of our method.

2.1 Imstitutional Background and Data

In the United States, local governments are “creatures of the state” subordinate to
state control. Municipal corporations, which include cities, towns, villages, and other
local government units, are authorized by state law to organize and function as local
governing bodies. This concept largely overlaps with the Census definition of “in-

corporated place”, which we use to organize our analysis.® In most states, one of

of regulation have affected new construction using a panel dataset for 44 metro areas.
3In several states the “township” form of government also has jurisdiction in zoning which aligns
with the Census County Subdivision definition.



the powers granted to municipalities by the state government is control over local
zoning decisions; indeed, the desire to control local zoning is a primary motive for
incorporation.

Zoning, broadly, consists of two key sets of regulations: land use regulations, which
partition local land into distinct use classes, and bulk regulations, which regulate the
physical dimensions and density of buildings in different land use classes. Examples
of bulk regulations include: minimum lot sizes (specifying the smallest allowed area
for a buildable lot), lot coverage requirements, front and side setbacks (mandating
minimum distances buildings must be from property lines), height restrictions, and
floor area ratio caps (regulating total floor area relative to lot size). Zoning codes also
specify the process through which development is approved, such as whether develop-
ment can be done by right and which governing bodies must approve developments.
These regulations combine to regulate how densely areas can be developed, the size
and spacing of buildings, the overall built form of neighborhoods, and the process
through which construction is approved. Other mandates and requirements, such as
parking minimums, further constrain both commercial and residential development.*

Municipalities enforce laws by issuing municipal codes which outline local regu-
lation in different domains. Some regulations apply to all land within a jurisdiction;
other regulations (such as minimum lot sizes) typically vary depending on the spe-
cific use class and district (i.e., single-family zoning, commonly referred to as R-1, or
commercial or industrial). These ordinances are updated over time to reflect changes
in local regulations and often aggregated by different companies online.

We source the text of municipal codes from a variety of municipal aggregators,
including American Legal Publishing, Municode, and Ordinance.com. These munic-
ipal aggregators post municipal codes and other information on local governments,
often at the behest of the local government to fulfill public posting requirements.
Table 1 illustrates the breadth of our sample coverage. In total, we cover 25% of
all municipalities in the U.S. and 6% of all townships. This coverage is skewed to
larger cities; of the 76% of the population in the U.S. that live in either a municipal-
ity or a township, we have relevant municipal documents for 63% of the population.
Panel B shows our underlying sources for the ordinances in our sample. American

Legal Publishing provides significant numbers of records in the Northeast and Mid-

4States and municipalities also enact building codes, which govern the building and safety stan-
dards that new construction needs to adhere to.


Ordinance.com

west, Municode provides especially good coverage in the South and the Midwest, and
Ordinance.com provides substantial coverage of the West and Northeast.?

We combine data on these municipal ordinances with a variety of municipal level
demographic, housing, and economic information such as building permits data from
the Census Building Permits Survey, rent and home price data from the American
Community Survey (ACS), and other sources. We describe the data sources we use

in greater detail in Table A1.

2.2 Processing Municipal Codes Using LLMs

In this subsection, we outline the general process we use to generate our housing
regulatory dataset, a process we refer to as generative regulatory measurement. Figure
1 also illustrates the overall approach.

The first step of our process is to download the sources of municipal codes listed
in Table 1. We collected these ordinances throughout Fall 2023, providing us a snap-
shot of zoning ordinances at that time. The lengths of many ordinances exceed the
context windows usable by current LLMs® (see Appendix Figure A2 for a histogram
of token length across our entire sample compared with the maximum token length
for various LLMs). As a result, it is either impossible or cost-prohibitive to simply
upload the entirety of municipal code documents into standard LLM services and
ask our questions directly. Moreover, LLM performance significantly declines with
context length(Modarressi et al., 2025).

To address this challenge, our second step is to use a standard framework in
computer science known as ‘retrieval-augmented generation” (RAG) (Lewis et al.,
2020). The basic objective of this approach is to combine a large pre-trained language
model with external information retrieval, in order to give the LLM the ability to “look
up” information from a vast corpus of text during the generation process. We describe
in subsection 2.5 the accuracy and cost implications of this choice.

In order to implement RAG, we first partition each ordinance into small chunks

of text taking into account the hierarchical section structure of the ordinance.” Next,

SWhen a municipality hosts its ordinance on multiple aggregators, we prioritize Ordinance.com,
and then Municode over American Legal Publishing.

6Several large cities exceed the maximum commercial model limit of 2 million tokens: for exam-
ple, New York City (17.1 million), Detroit (4.3 million), and Atlanta (3.6 million).

"We further split or combine sibling sections so that their length ranges between 50 and 1,000
tokens of text. One token is roughly 3/4 of a word.
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we map each chunk of text into a vector representation called an embedding. Em-
beddings are vector representations of text trained to minimize the distance between
semantically similar content, allowing efficient comparison of text meaning (Reimers
and Gurevych, 2019). We vectorize each subsection of the ordinance document using
the OpenAl ‘text-embedding-3-large” algorithm.

The third step in our process is to prepare a set of questions that we want to
ask of our sample. We begin with the question base already used by the Pioneer
Institute (i.e., “Is multifamily zoning allowed in this area as-of-right?”). We add to
these questions four additional questions about the process determining construction
permitting and approvals. In the initial step of our process, we simply use the text
of the questions verbatim as first posed by the Pioneer Institute (or the first draft
of the additional process question). The text of the questions is also run through an
embedding process to generate its own vector representation.

The fourth step of our process is to identify the most likely relevant information
from the ordinance to show the LLM. We use cosine similarity, a standard measure
of vector distance, to rank each text chunk by proximity to the question. We next
rerank using a cross-encoder on the top 50 chunks of text, which is a more powerful
model for calculating the similarity between two pieces of text (Anthropic, 2024).8
We then select the top 4,000 tokens (~3,000 words) worth of text chunks, since LLM
performance significantly degrades beyond this length (Modarressi et al., 2025).

The fifth step in the process is to send the LLM the query, which consists of the
zoning question, the 4,000 tokens worth of text chunks, and a system prompt. The
system prompt guides the LLM to provide an open-ended argument followed by a
parsable answer (i.e., “Yes” or “No”). The open-ended answer allows for humans to
audit the reasoning path of the LLM and has been shown to increase performance by
providing space for the LLM to think out loud (Zhang et al., 2022).

These five initial steps are sufficient to produce an answer to each regulatory
question sourced from municipal documents. However, they are not necessarily very
accurate. As a result, we followed a data-driven process to iterate and improve the
accuracy of our approach. We used three distinct strategies which we describe in more
detail below: prompt chaining, prompt engineering, and providing detailed question

background information. To avoid overfitting, we conducted all such training on a

8We use the Cohere reranking model for this step. For some questions, when double-checking
the answer we instead use keyword inclusion to rerank.



distinct subsample of the Pioneer data, and then performed our final validity checks
only once on a leave-out sample of the Pioneer data.

The first strategy is prompt chaining, which breaks down LLM queries into mul-
tiple steps (prompts) where the output from one prompt is used as input in the
next.” For instance, when asking about the largest frontage requirement for all
single-family residential districts, we first ask the LLM to name all districts which
allow single-family housing. We do this as a separate step because the relevant text
defining allowable uses in a district and the text defining frontage requirements for
districts are typically in different sections of the ordinance with distant embedding
vectors. Additionally, LLM performance is enhanced when it is only required to an-
swer a direct single step question in each call (Khot et al., 2023). Another use of
prompt chaining is through the post-processing of certain questions, which functions
to double-check answers. For instance, the answer “Yes” to a question about whether
townhouses/attached housing is allowed typically means the LLM has found affir-
mative evidence that such housing typologies are allowed, while an answer of “No”
signifies either a lack of approval, or a lack of sufficient context for the LLM to answer
the question. In such cases where an answer could indicate lack of information, we
reprompt the LLM and directly use keywords like “townhouse” or “attached” to refine
and rerank our search (instead of the reranking algorithm).

A second strategy of model improvement is to generate additional background
information to provide to the LLM. The background information and model assump-
tions were initialized based on the Pioneer study (their “Issue Overview” and “Re-
search Coding” sections for each question) when possible and were LLM generated
otherwise. We manually refined this background information to address areas of
misinterpretation by investigating cases in which regulations were misclassified. Ap-
pendix C contains an example of an original Pioneer question, our rephrased question,
as well as the additional background information and assumptions provided for that
question.

The third dimension of improvements comes from prompt engineering. In the
“system prompt” we instruct the LLM to think “step by step” to induce chain of
thought reasoning (Zhang et al., 2022)!°. Additionally, we rephrase the questions

from the original wording provided by the Pioneer Institute in order to produce a

9See Anthropic Prompt Chaining Guide for further details on prompt chaining, as well as Wu
et al. (2022).
10Gee Appendix Section C for exact system prompts for each type of question.
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more simplified version which is easier for the LLM to parse. This primarily consists

of breaking down compound questions.

2.3 Simple Example to Illustrate Approach

To illustrate our process more concretely, we go through our procedure for one ques-
tion in our sample in Arlington, Massachusetts on the presence of inclusionary zoning
mandates or incentives. In this case, the question used by the Pioneer Institute was

sufficiently concise and clear that we did not need to modify it. This question reads:

Question: Does the zoning bylaw/ordinance include any mandates or

incentives for development of affordable units?

Figure 2 visualizes the context retrieval process. Each dot represents one chunk
of text and is colored by its broader article in the ordinance. Reassuringly, in Panel
A we find that chunks within the same article cluster together, which suggests that
embeddings are picking up on the underlying meaning of the text. The black star
in the upper right quadrant represents the embedding for the question itself. RAG
selects the chunks of text closest to the question in embedding space to provide to
the cross-encoder reranker. In Panel B, we confirm that the most relevant sections
on affordable housing are indeed selected.

We provide these chunks of text, our system prompt described above, along with
the question shown above, and additional pieces of background information and as-
sumptions to whichever LLM model that we're using. In this case, the background

information and assumptions given to the model are as follows:

Background Information: Inclusionary zoning requires or encourages
developers to include affordable dwelling units within new developments

of market rate homes. Some municipalities call it “incentive zoning” ...

Assumptions: Do not include provisions for entirely affordable, subsi-

dized housing development by public or non-profit corporations. Also do

11



not include provisions under “rate of development” headings that exempt

affordable units from project phasing and growth caps.

By providing relevant text and guidance to the LLM, we receive a final classifica-

tion along with references for the source of this information:

GPT-4 Turbo Output: The zoning bylaw/ordinance provided does
indeed include mandates and incentives for the development of affordable

units. Here’s a breakdown of the evidence supporting this conclusion:

1. **Mandates for Affordable Housing Development**: The ordinance mandates that
15% of the residential units in new projects be affordable units (Section 11.08, Part 1,
d. REQUIREMENTS, 1.). This requirement applies to all new residential projects,
including phased or segmented developments, with six or more units subject to Envi-
ronmental Design Review (Section 11.08, Part 1, b. APPLICATION). The affordable
units must conform to specific affordability criteria, ensuring they are accessible to
households earning no more than 60% of the median income for rental units and no
more than 70% of the median income for homeownership units (Section 11.08, Part 1,

c. DEFINITIONS)... (rest of answer omitted for brevity)

In this case, the model’s output matches the Pioneer Institute classification of

inclusionary zoning in Arlington, MA.

2.4 Model Validation with Pioneer Data

A critical step in assessing the performance of LLM-based approaches lies in compar-
ing model-generated classifications against a ground truth benchmark. The Pioneer
dataset serves as an excellent starting point for our purposes, as previously mentioned,
due to the expert classification of a large number of municipalities. The main draw-
back in using this dataset is the staleness of responses—with responses categorized as
of 2004. Additionally, the Pioneer Institute relied on some outside information (i.e.,

directly contacting local regulatory bodies) in addition to municipal ordinance text.
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To address these issues, we construct a hold-out testing dataset based on 30 ran-
domly chosen municipalities from the Pioneer Institute dataset. We also recode these
municipalities to 1) exclude question responses which relied on outside context, and
2) hand-correct inaccuracies in the original classification.!!

Table 2 shows the performance results of our baseline GPT-4 Turbo model against
the testing sample in Massachusetts. Among continuous questions (Panel A), our gen-
erated answers have an average correlation of 0.87 with the ground truth of expert
classifications, after winsorization of our results at the 1% level. These results sug-
gest we are able to reach high model performance when matching against continuous
numerical outcomes. We also find high model accuracy when measuring binary ques-
tions (i.e., those with a yes or no answer like whether “multi-family housing is allowed”
which we measure perfectly across all municipalities). As shown in Panel B of Ta-
ble 2, we observe a model accuracy of 96% across all binary questions. Because the
raw accuracy measure may be biased depending on the base rate of answers, we also
provide a Relative Squared Error (RSE) that compares each model result to a naive

model which guesses the sample mode. We observe quite small RSEs as well.

2.5 Sources of Model Improvements

In this section, we provide a detailed decomposition of how each training step con-
tributes to accuracy. We do so to provide intuition, identify the most crucial training
steps, and to show robustness. We run each model five times to calculate the mean
and standard deviation of accuracy for each specification. The results of this inves-
tigation are shown in Table 3. The first two columns report the mean and standard
deviation of our accuracy measures, while the third and fourth columns report the
mean and standard deviation of the “I don’t know" rate.

The first choice we face is whether to use RAG models at all or not. Because the
municipalities that make up our core validation sample in Massachusetts are shorter
on average, we are able to compare the accuracy of specifications with and without

RAG in Table 3. Here, we use Gemini Flash 1.5, a long context window model.'?

HDuye to the time-intensive nature of the expert correction step, we only check responses in which
our LLM approach disagrees with the Pioneer Institute classification.

12Gemini Flash 1.5 has a context window of one million tokens, or roughly 750k words. The
primary model we use in our analysis, GPT-4 Turbo only has a context window of 128k tokens or
96k words, which is too short even for many of the relatively shorter Massachusetts codes we use for
validation.
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We test three specifications: Full RAG, Basic RAG, and No-RAG. Full RAG follows
our main specification, while basic RAG uses a smaller, less powerful, embedding
model'® and does not use reranking. No-RAG provides the entire ordinance to the
LLM as context. For each specification we only provide the question and ordinance
text to the LLM, omitting any of our refinements like prompt chaining or background
information.

Ex-ante it is unclear whether using RAG will improve performance. Because RAG
only provides a subset of the overall ordinance to the LLM, it may omit some critical
information. On the other hand, without RAG the LLM may struggle to interpret the
critical sections of text correctly as performance degrades with input size (Modarressi
et al., 2025). In our environment, we find that RAG approaches demonstrate improved
overall performance for both continuous questions (Table 3 Panel A) and binary
questions (Panel B). For continuous questions, we observe a dramatic reduction in
“T don’t know” responses when implementing RAG (dropping from 38.7% with No-
RAG to 12.9% with full RAG, with particularly strong improvements from basic to
full RAG). Continuous questions typically involve information that is localized to
specific sections of the ordinance, such as in tables. In our setting, therefore, we
conclude that refinements to RAG, such as re-ranking and the size of the embedding
model, meaningfully improve retrieval (Anthropic, 2024); and that the benefits from
smaller context windows outweigh the costs of possible information omission. These
findings, combined with RAG’s feasibility benefits and cost advantages, justify our
choice to use RAG for the remainder of the paper.

Next, we examine the impact of iteratively layering the prompting strategies dis-
cussed in subsection 2.2. For this analysis, we switch to our primary model, GPT-4
Turbo, and use full RAG throughout. We start with a “no prompting" specification
that simply feeds the questions as originally phrased by the Pioneer Institute along
with the context, achieving a correlation of 0.72 for continuous questions and an ac-
curacy rate of 83.5% for binary questions. We then layer in additional prompting
strategies: first adding prompt engineering, then incorporating background informa-
tion, and finally implementing prompt chaining. For binary questions, incorporating
background information yields the largest improvement (from 86.0% to 93.9%), while
for continuous questions, prompt chaining provides the biggest boost (increasing cor-

relation from 0.73 to 0.87). Our main specification, which uses prompt chaining,

13Specifically, we use multi-qa-mpnet-base-dot-vi.
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reaches 0.87 correlation for continuous questions and 96.7% accuracy for binary ques-
tions.

In Table A2, we disaggregate these results to examine how different prompting
strategies affect each question. The impact varies substantially across questions.
Some questions, like those about flexible zoning, achieve high accuracy even without
prompting. Others show marked improvements from specific strategies—wetland re-
strictions in lot size calculations sees substantial gains from prompt engineering alone,
while questions about affordable housing incentives benefit from both rephrasing and
background information. For questions like longest frontage requirements, where rele-
vant information often appears in semantically distant parts of the ordinance, prompt
chaining yields the largest improvements (correlation increasing from 0.46 to 0.70).

The key takeaway from our approach towards generative regulatory parsing is
that, at least with models available at the time of writing, model accuracy improves
substantially above simple “zero shot learning” examples given additional human in-
put. We provide substantial human input in the areas of prompt engineering and
providing background information, which helps to direct the LLM on the relevant fo-
cus of the text. Additionally, we design a multi-step reasoning chain for each question
to simplify the tasks required by the LLM in each sub-step. Such additional human
processing is likely necessary in other contexts as well, at least until further advances

in LLMs are made.

2.6 Understanding Model Errors

To better diagnose reasons for model error in our baseline approach, in Figure A4
we provide a complete decomposition of all of the reasons for disagreement between
GPT-4 Turbo and the original Pioneer Study on binary questions in our testing sam-
ple. We categorize disagreements into whether the Pioneer study was itself outdated
or inaccurate, the LLM was incorrect, or the answer is ambiguous. While ideally
municipal regulations would identify a clear and unambiguous answer, we observe
differences even among legal experts hired for the task of hand-classifying regula-
tions. Finally, we further divide cases where the LLM was incorrect into those which
it missed the relevant text chunks and those which it misinterpreted the context.
Largely, answers from the Pioneer Institute that our model did not match were

due to changes in the underlying ordinance since the Pioneer Institute study roughly
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20 years ago. LLMs missed the relevant text chunks in two cases, while in four cases
the answer itself was ambiguous. The most important category for our purposes
is cases in which the LLM misinterpreted the context—this happens in nine cases,
most often with respect to whether townhouses are allowed and with permit caps or
phasing. Six questions do not exhibit this type of error at all. When considered over
a large sample, these results appear promising in suggesting that errors are typically
quite rare.

Importantly, the errors also appear balanced across false positives and false nega-
tives. Appendix Table A3 provides a confusion matrix comparing our baseline GPT-4
Turbo model against the Pioneer classifications, separating true positives, false pos-
itives, true negatives, and false negatives. Our errors are equally represented among

false positives and false negatives, suggesting no obvious bias in our classification.

2.7 Additional Validation Checks Beyond the Pioneer Sample

Additional Hand Validation: To assess accuracy outside the Pioneer study Mas-
sachusetts sample, we conducted additional manual validation. First, we reviewed
four process questions on a nationwide random sample of 30 municipalities (Panel
A of Table A4). This component also enables us to augment the initial Pioneer set
of questions to incorporate additional regulatory questions related to housing pro-
cess. After removing ambiguous cases, the model achieved accuracy rates ranging
from 89% to 100% across these questions. Second, we assessed accuracy on bulk
zoning regulations by randomly selecting 30 municipalities in California (Panel B of
Table A4). After dropping ambiguous cases—such as zoning rules that varied be-
tween interior and corner lots—the model achieved 89% accuracy for both measures.
These results suggest that the model generalizes well beyond the Massachusetts-based

training data, performing reliably across diverse regulatory contexts.

Comparison Against WRLURI: We next compare our analysis to another com-
monly used dataset of national housing regulation: the WRLURI from Gyourko et al.
(2021); we describe this contrast in more detail in Appendix D. The key takeaways
from this investigation are that our approach improves on WRLURI in both cover-
age and accuracy. Additionally, our indices consist of only hard regulations, while

WRLURI also incorporates housing market outcomes.
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2.8 Scalability and Replicability of LLM Regulatory Analysis

While LLMs hold promise for regulatory analysis based on accuracy, their key advan-
tage lies in scalability and cost-effectiveness. Appendix Figure A3 reports the cost
comparison between human analysis and two LLM-based approaches: one using RAG
and another without RAG. The RAG-based approach becomes more cost-effective
than the human-based analysis at larger scales, while the No-RAG approach exhibits
a cost structure more similar to human analysis. Human-based analysis shows a linear
cost increase as the number of municipalities grows. The RAG approach has a higher
setup cost, but better scalability. The cost curves for RAG and human analysis in-
tersect at approximately 300 municipalities, beyond which the RAG method becomes
increasingly more cost-effective. While both LLM-based approaches require similar
setup costs, the No-RAG method’s heavy token usage results in steeper cost scaling,
making it less advantageous for large-scale analysis compared to the RAG approach.

Another consideration in adopting LLM-based approaches for regulatory analysis
is the replicability of results. We explore techniques to reduce the stochasticity of
LLM responses including setting a random seed, lowering the temperature (a measure
of LLM randomness), and ensembling (aggregating responses from multiple LLM
responses). In short, we find that no strategy provides full replicability and conclude
that using a low temperature single-shot (no ensembling) approach is optimal to create
an easily interpretable dataset that retains high levels of replicability. See Appendix

Section B for complete details on the replicability of our approach.

3 Characterizing Housing Regulations

In this section, we summarize our housing regulations dataset and examine regulatory
patterns within metropolitan areas and across municipalities. This analysis reveals

insights into both the drivers and impacts of different zoning approaches.

3.1 Principal Component Analysis

Our nationwide dataset consists of 20 questions and covers nearly 6,000 local govern-
ments. To provide context for our analysis of regulatory dimensions, Table 4 presents
the key descriptive statistics for our nationwide housing regulation dataset. The

continuous measures in Panel A reveal substantial variation in regulatory scope and
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complexity across municipalities. The average municipality has 14 zoning districts,
showing considerable regulatory sophistication. Bulk regulations are frequently strin-
gent, with lowest minimum lot sizes averaging 10 thousand square feet and longest
frontage requirements averaging 92 feet—well above typical urban lot dimensions.
Process regulations typically involve extended review periods, with maximum po-
tential waiting times averaging around 7 months. Appendix Figure A1l shows that
housing process regulations vary substantially across different regions, with particu-
larly onerous requirements in the American West and California in terms of waiting
times, public hearings, and mandatory approval steps.

Panel B of Table 4 highlights the prevalence of binary regulatory controls. A
notable feature of housing regulations across municipalities is restrictions on housing
density: multifamily housing is prohibited in 5% of jurisdictions (rising to 10% in high-
income areas), and 86% of municipalities restrict conversions to multifamily units.
About 37% ban mixed-use developments combining residential and commercial uses.

We next assess the correlation structure between variables in Appendix Figure
A12. The average absolute value correlation between regulations is only 0.08 with
near zero correlation between many regulations. For example, minimum lot size re-
quirements have a correlation of 0.01 with flexible zoning policies. Still, there are
many regulations that are strongly correlated, especially similar types of regulation
(i.e., comparing different bulk regulations). Some correlations have interesting signs;
for example, allowing accessory dwelling units (i.e., a less restrictive regulatory envi-
ronment) is actually positively correlated with the lowest minimum lot size as well as
permit caps (which both correspond to a more restrictive regulatory environment).
These complicated covariance patterns reflect the diversity of zoning codes created
by local governments, and the wide variety of objectives these governments pursue.

To summarize the correlation structure between regulations, we turn to a PCA
analysis. We start by assessing how many components capture systematic variation
using a variety of statistical tests as outlined in Peres-Neto et al. (2005). First, we
compare the eigenvalues!* for each principal component to those expected under a null
hypothesis of no correlation between regulations. Panel A of Figure 3 visualizes this
comparison and shows that the first two principal components explain substantially

more variation than would occur under the no correlation null hypothesis, with a

1Each eigenvalue reflects the amount of variation explained by a principal component; dividing
it by the sum of all eigenvalues gives the share of total variation explained.
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sharp decline in explanatory power for subsequent components. Next, we apply an
alternative statistical test, Velicer’s Minimum Average Partial test (Velicer et al.,
2000), which suggests selecting the number of principal components that minimize the
average residual pairwise correlations. Panel B of Figure 3 shows that two principal
components minimize the average squared pairwise correlations and fourth-power
correlations. These statistical tests suggest that housing regulations are not well-
summarized by a simple unidimensional level of stringency. Rather, two underlying
factors capture the bulk of the systematic variation, with the remainder likely driven
by a long tail of idiosyncratic factors.

To better understand the economic interpretations behind the two main principal
components, and to disentangle the relative roles of demand and supply in hous-
ing production, we show in Figure 4 the associations between housing construction
(building permits), housing cost (median house prices), and our two key principal
components. We interpret the association of these two principal components with
housing construction and cost in light of a simple framework of supply and demand
for housing. In places with rising demand for housing and inelastic supply, home
prices will be high and construction low (the lower-right quadrants of Panels A and
B of Figure 4). In areas with rising demand for housing and elastic supply, there will
be high house prices and high construction (i.e., the upper right quadrant). In places
with falling housing demand, there will be both low construction and prices. In places
with elastic housing supplies and constant or moderately rising demand, there will be
low home prices and high construction.

Panel A of Figure 4 highlights that areas with a high value for the first princi-
pal component generally have high house prices as well as construction, while areas
low in this dimension typically have both low prices and construction. This associa-
tion suggests that the first principal component generally coincides with high housing
demand environments. This interpretation is supported by the main regulatory load-
ings on this principal component (Table 5), which loads heavily on measures that
are typically associated with more developed, high-demand housing markets. For in-
stance, affordable housing and age restricted provisions are policy tools that are more
likely to be implemented in areas with significant housing pressure and the adminis-
trative capacity to manage complex policies. Other associates of the first principal
component relate to additional layers of local government: maximum review wait

times and public hearing requirements. However, areas heavy in this component are
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much less likely to have bans or limits on multifamily housing, townhouses, accessory
apartments (ADUs), or flexible zoning.

By contrast, the second principal component (Panel B, Table 5) associates highly
with areas that have high house prices but low construction, while being negatively
associated with areas that have low prices and high construction. This suggests that
while the second principal component is also associated with higher costs, these higher
costs appear to be more related to housing supply factors rather than higher housing
demand (as appears to be the case with the first principal component).

Figure A5 provides a visual scatterplot representation of the relationship between
these two principal components across U.S. municipalities. Suburban areas around
high-demand metropolitan areas (such as Darien, CT or Billerica, MA) rank highly
on both PCs. High-demand urban areas (like Santa Ana, CA) score low in PC2, but
are relatively high in PC1. Low-demand urban areas (like Cleveland, OH) rank low
on both PCs. Finally, exclusionary suburbs of low-demand areas (like Novi, MI) rank
high in PC2 but low in PC1. Figure A6 maps the first two principal components
across the nation.

We summarize the multidimensional nature of zoning codes as our first fact:

Fact 1. Zoning codes are multidimensional and can be clustered into two main prin-

cipal components.

3.2 Value Capture and Housing Markets

We next focus on the economic interpretation of these two principal components. We
argue the first principal component can be interpreted as value capture. Value cap-
ture in the housing context refers to mechanisms by which local governments extract
a portion of the increased land value or housing surplus that arises from high market
demand. This typically occurs through regulatory tools that allow municipalities to
convert some of the economic gains from private development into public benefits or
revenue. As discussed in the previous section, factor loadings reveal that this compo-
nent associates most strongly with regulatory tools like inclusionary zoning mandates
(where developers must include affordable units), affordable housing incentives, and
age-related provisions, which are tools that directly extract concessions from devel-
opers. Housing process regulations, such as public hearing requirements and waiting

times, also reflect additional wedges or distortions which are more feasible in higher
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demand environments.

We further support this interpretation by linking this regulatory dimension to
its economic associates in Table 6, focusing first on the relationships with county-
level amenities. These measures include: an index of retail establishments per capita
across industries (constructed by taking the first PC of industry-level establishment
counts), a natural amenity index (capturing features like temperature and sunlight
hours), patents per capita (measuring productivity), and employment density (job
access benefits). We find that the first PC has a large and statistically significant
positive relationship with all four measures, while the second PC has either small or
statistically insignificant relationships with each. We construct a combined amenity
index by taking the first principal component across these four measures and find
an even stronger relationship between the combined amenity index and the first PC.
These results support a housing demand interpretation of this regulatory regime:
areas with higher amenities feature higher housing demand, which generates a surplus
that can be captured through regulation.

We explore a more granular comparison across different types of retail establish-
ments in Appendix Figure A7. Counties scoring high on the first PC have higher con-
centrations of consumer retail outlets (like apparel stores and restaurants) and profes-
sional services (including educational institutions, healthcare facilities, and cleaning
services) per capita, while having fewer establishments typically associated with nega-
tive externalities, such as gas stations, utility services, and truck transportation busi-
nesses per capita. This pattern suggests these areas are high-demand locations where
businesses can command premium rents (also see Couture et al. (2024)). Appendix
Figure A9 shows that the first PC exhibits a high degree of spatial autocorrelation,
as captured by Moran’s I. This supports the notion that the first PC captures factors
that vary smoothly across space, such as quality-of-life amenities, which naturally
exhibit spatial dependence. In contrast, the second PC has very low spatial auto-
correlation, suggesting that it is less influenced by spatially clustered amenities and
more likely driven by other economic forces.

We then examine associations of this first PC on other variables, controlling in
column 2 for metro fixed effects. Consistent with a demand interpretation of this
principal component, we find areas that are high on this dimension have a high col-
lege share, more young households, have lower poverty rates, and have substantially

higher shares of Democrats. However, they have higher density on some measures
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(especially multifamily structures), and are also generally larger areas in land units,
with more municipalities as neighbors, and closer to the city center. These associa-
tions together suggest that areas high in PC1 are high-demand areas which may be
prone to extraction of value by local governments (Diamond, 2017).

To be sure, such regulations may also affect housing supply. We explore this vari-
able in more detail in columns 1-2 of Appendix Table A5, adding additional topo-
graphical and land availability controls such as the fraction of land developed in 2001,
the squared fraction of land developed in 2001, and the fraction of land with a flat
topography. The first principal component is associated with lower housing elastici-
ties, though the significance becomes marginal once metro fixed effects are included.
This suggests that, despite the raw association of this PC with higher construction,
the regulations associated with the PC impose an implicit tax on new construction,
which weakly associates with lower housing supply elasticity. We summarize these

patterns as our second fact:

Fact 2. The first principal component corresponds to value capture in high-demand
locations. This component loads heavily on regulations that allow municipalities to ex-
tract and redistribute housing value, such as inclusionary zoning mandates that require
developers to include affordable units. These requlations enable local governments to
convert market-rate housing demand into public benefits, and are most prevalent in

densely populated cities with high consumption and production amenities.

3.3 The Role of Exclusionary Zoning

Exclusionary zoning refers to land use regulations that limit housing density and
types, often with the effect of excluding lower-income residents from certain areas.
The role of exclusionary zoning in shaping socioeconomic patterns has been a subject
of significant research and debate in urban economics and policy circles, but accurately
defining these practices has been a challenge.

The second principal component of housing regulations identified in this study
correlates strongly with intuitive measures of exclusionary zoning, particularly min-
imum lot sizes and other bulk regulations that limit density, the loadings for which
we show in Table 5. In fact, the highest loading for this principal component is the
smallest residential minimum lot size, a commonly used proxy for exclusionary prac-

tices in general. This regulation sets a lower bound on how small a piece of land
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can be for a single housing unit, impacting the potential density of an area. Larger
minimum lot sizes result in fewer, more spread-out homes, while smaller minimums
allow for denser development. They have been frequently estimated in prior research
through bunching methods (Cui, 2024; Song, 2021) as important drivers of housing
regulations; the contribution of our approach is to measure these regulations directly
from municipal documents, rather than indirectly through their effects on observed
housing development. Figure A8 demonstrates the high frequency of these minimum
lot size regulations specifically; two-thirds of local governments prohibit residential
lots smaller than 5,000 square feet across the entire town (Panel A), and nearly half
enforce minimum lot sizes of at least half an acre in some part of their jurisdiction
(Panel B). This mandated minimum amount of housing consumption effectively trun-
cates the left tail of the housing value distribution by preventing the construction of
houses on small lots of land or apartments.

We validate our economic interpretation of the second PC by investigating its
relationship with housing affordability. We show municipalities high in the second
principal component have fewer housing units affordable to the state median income
household (Panel A of Figure 5). We focus on three key mechanisms driving this
relationship. First, exclusionary zoning shifts the entire housing price distribution
rightward, with significantly higher median home values in high second PC munic-
ipalities compared to low second PC areas (Panel B). Second, exclusionary zoning
shifts mass away from the left tail and towards the median of the housing price
distribution; i.e., a left-truncation of the house price distribution corresponding to
missing units made unviable through the presence of minimum housing requirements.
In Panel C, we compare the distribution of home values across granular home value
bins for low and high second PC areas. High second PC areas have relatively more
housing units at or right below the median home price and less well below the median,
suggesting a leaner left tail. We further show in Appendix Figure A10 that this left
truncation is more pronounced in higher median home values areas, and that areas
higher in the second PC have smaller shares of low-income and younger households.
The third dimension by which exclusionary zoning practices limit affordability is on
the rental margin. Panel D reveals that high second PC areas limit the degree of
rental housing with a strong correlation of 0.40 between the second PC and the share
of owner-occupied housing. For rental housing, the second PC is more strongly asso-

ciated with overall rents than with rent conditional on housing characteristics (i.e.,
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number of bedrooms, as shown in Appendix Figure A11), suggesting that it further
raises rental prices by shifting the composition of available units. The resulting lack
of affordable housing options results in a negative correlation between the second PC
and the share of low-income families (-0.26) and young households under 35 (-0.39).

We further validate that density restrictions impact observed density in Appendix
Table A6. We examine associations between our measured regulations and building
permits as well as affordability of local housing units using three approaches: bivariate
regressions, LASSO, and XGBoost. Density restrictions (multifamily bans, minimum
lot sizes, frontage requirements) associate with less affordable housing. This rules out
the competing hypothesis that lower construction in these areas is associated with
lower demand. Building permits are best predicted by affordable housing mandates.

We explore the resulting distributional consequences of these quantity-based hous-
ing restrictions in Table 6. We find that PC2 corresponds to a higher proportion of
white, medium-to-high income, and college-educated residents. This suggests racial,
ethnic, and income segregation effects of these policies. This is consistent with prior
analyses of zoning as a tool for maintaining racial homogeneity in the absence of racial
covenants (Rothwell, 2011; Cui, 2024). Areas higher in the second PC also have a
relatively higher Republican share of the population, relative to their metro.

Areas characterized by more exclusionary zoning practices also show higher av-
erage math test scores. This pattern suggests that exclusionary zoning effectively
creates enclaves of educational privilege, where resources and positive peer effects are
concentrated. Consistent with a public goods motive, we also observe higher local
revenue per student. These results are consistent with classic theories of fiscal zoning
which emphasize the role of zoning and property taxes in conjunction with support of
local public goods (Fischel, 1987; Hamilton, 1975, 1976).These areas also tend to have
lower property tax rates, suggesting that by limiting the share of cheaper housing,
they can maintain a lower tax burden while still sustaining high-quality and well-
funded public education (Table A7). Areas higher in the second PC also show higher
causal measures of economic opportunity (drawn from Chetty et al. (2014)). The
presence of such public goods may help to explain the sorting of higher-income resi-
dents in these areas. However, they also point to the socioeconomic costs of excluding
lower-income residents from access to areas with such public goods. We summarize

these associations as our third fact:

Fact 3. The second principal component captures exclusionary zoning practices aimed
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at restricting housing density and affordability through bulk requlations. This dimen-
ston loads heavily on minimum lot size requirements and procedural barriers to devel-
opment, which are concentrated in affluent suburban areas. These requlations asso-
ctate with a truncation of the left tail of house prices, lower construction, and strong

sorting on education and income.

3.4 Monocentric City Model and Zoning Gradients

We next interpret municipal regulations in the context of the monocentric city model
(Alonso, 1964; Mills, 1967; Muth, 1971). In these models, there is a central location
in each city where production is concentrated and rents decay as one moves away
from this productive center, with the rate of decay governed by transportation costs.
These dynamics may also affect the benefits and costs of zoning regulations at different
distances from the city center. Housing regulations, in turn, may then affect the rent
gradient as one moves away from the city center.

We show various regulatory variables along the dimension of distance to city center
in Figure 6. Affordable housing mandates are decreasing in distance from the center
of the city, illustrating that these regulations are most commonly found at the centers
of cities. Minimum lot size requirements show a different pattern, and vary markedly
across regions. While minimum lot size requirements are higher in suburban areas on
average, this relationship is particularly driven by the Northeast and Midwest regions.

In Table A10, we explore the relationship between distance from the city center
and regulatory stringency for all housing regulations that we measure and both the
first and second principal components. The first four columns show these relationships
between regulations and distance from city center by region, while the final column
shows the relationship for the U.S. as a whole. Across all regions, we observe that the
number of zoning districts decreases with distance from the city center, suggesting
simpler zoning structures in more peripheral areas. This pattern is particularly pro-
nounced in the Midwest and South. Some components of allowable density decrease
with distance from the center, especially the permission of townhouses and mixed-use
development. The allowance of multifamily housing shows a positive correlation with
distance in the West and South, contrary to the general expectation of decreasing
density with distance.

The Northeast stands out with several distinct patterns. Unlike other regions,
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it shows sharply increasing restrictiveness with distance for several measures. For
instance, the longest frontage requirement and highest residential minimum lot size
both increase with distance from the city center in the Northeast, while these measures
show weak relationships in other regions. These results are especially surprising in the
context of well-developed public transit and highway links in this area, which should,
all else equal, facilitate greater development and density outside of city centers.

Several factors may help to explain this regional variation. The Northeast was the
first region of the U.S. to urbanize and industrialize, allowing for greater development
before the advent of zoning. Many of its suburbs were established earlier than in other
regions, often as affluent enclaves seeking to preserve their character against urban
expansion (Fischel, 2015). In addition, the region has a highly fragmented system of
local governments, with many small, independent municipalities. This structure facil-
itates more localized and potentially more restrictive zoning policies. The Northeast’s
early experience with industrial pollution and urban congestion may have fostered a
culture of environmental protection that manifests itself in stricter land use controls,
particularly for suburban lot size requirements, which were commonly justified on
the basis of preserving natural land. Finally, the region has had particularly strong
fights over access to local schools (i.e., school busing (Angrist et al., 2022)) that can
increase the use of exclusionary zoning practices to maintain local school districts by
limiting access to lower-income and minority households.

In contrast, California, which also has high house prices and where housing regu-
lation is commonly thought to be tight, appears surprisingly to have more nationally
typical bulk regulations. We show a map representation of these regulations in Fig-
ure A6, which highlights the high minimum residential lot size requirements in the
Northeast relative to California. Instead, California’s housing market is heavily in-
fluenced by state-level regulations, such as environmental reviews, and an onerous
permitting process. We find evidence of this in Appendix Figure A1, which shows
that California has the highest potential waiting time for review of a typical new
multi-family building (see Mayer and Somerville (2000) for a link between regulatory
uncertainty and reduced construction) and highest prevalence of public hearing re-
quirements for multi-family buildings. These results therefore suggest that while the
Northeast and California have high housing costs, they are the result of very different
factors that may call for different policy responses. Furthermore, California’s housing

market faces significant constraints due to its challenging topography (Saiz, 2010),
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which limits developable land, and the high demand for natural amenities and local
jobs. These factors can create a situation in which even relatively less restrictive
local bulk regulations can result in binding constraints on housing supply, especially
in combination with a challenging permitting process.

To explore the drivers of exclusionary zoning practices in the Northeast further,
we follow (Glaeser and Ward, 2009) who connected minimum lot sizes drawn from
the Pioneer Institute survey in the Boston metropolitan area to historical variables:
particularly historical density and industrial production. The key conclusion from
that analysis is the gradient between minimum lot sizes and distance to city center
(in Boston) was largely explained by the fact that low density areas historically (in
1940) were able to adopt minimum lot size requirements, and thereby stay low density.
We expand the scope of this analysis to municipalities across the nation.

In Table A11, we show the key object of interest—regional gradients of mini-
mum lot size against distance to city center—across a range of controls. Our initial
specification reveals that the Northeast and (to a lesser extent) the Midwest feature
substantially higher minimum lot sizes as distance to city center increases, a relation-
ship which strengthens after controlling for a fixed effect for the nearest metropolitan
area. However, we are able to partially account for these gradients by controlling for
historical variables, drawn from 1940, which capture density, manufacturing output,
and demographic variables in that period. Our preferred specification, in column
(7), controls for an interaction of historical municipal-level density with county-level
industrial production. This specification reduces the regional gradient by 40%. We
are able to explain an even larger fraction of the raw gradient in a final specification
which controls for a large battery of historical variables.

There are several potential factors which could explain this result. Less dense
areas in the vicinity of industrial centers in the Northeast and Midwest could be
averse to industrial pollutants; they may have been motivated by social exclusionary
factors against industrial workers (who were disproportionately immigrant and non-
white, see Cui (2024)); and the spread of industrial production through automobile
traffic may have made such areas adopt stricter zoning to thwart direct industrial
spillovers, as suggested by Fischel (2015). This finding is consistent with several
plausible channels connecting industrial spillovers and exclusionary motives, and we
formally consider this channel in the context of our model in Section 4.

Our findings on spatial patterns of zoning have important implications for urban
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economic models. Traditional models predict that all households prefer central lo-
cations to minimize commuting costs, with wealthier residents outbidding others for
scarce urban land. While the general relationship between regulatory intensity and
distance from city centers is consistent with standard monocentric city models (i.e.,
Rossi-Hansberg (2004)), the strong sorting of high-income households into expensive,
strictly regulated suburbs is a recognized challenge for these frameworks (Glaeser et
al., 2008). This spatial pattern is more pronounced in the United States compared
to other countries, where it is more typical for wealthy residents to reside in the city
center, and appears particularly pronounced in the Northeast. Our results suggest
that this sorting is accompanied by regulatory restrictions on the minimum allowable
housing size, which truncates the housing size distribution to the left, and results
in sorting of higher-income residents to distant suburbs against the typical pattern
expected in the monocentric city model. We summarize these patterns as our fourth
and final fact:

Fact 4. Zoning regulations generally follow a monocentric pattern, with value capture
tools predominant in city centers and exclusionary zoning practices intensifying with
distance from urban cores, a pattern most pronounced in the Northeast where suburban

areas employ particularly strict density restrictions.

4 Discussion and Framework

4.1 Model Framework

We next interpret these empirical findings through a model of inter-municipal com-
petition in which local governments strategically select housing regulations. A more
complete version of the model is discussed in Appendix E. The model features house-
holds sorting across locations with two different regulatory regimes intended to proxy

for our first two principal components. The key elements include:

Agents and Locations: The economy contains two types of households differen-
tiated by productivity: high-wage (H) and low-wage (L), earning w > w”. House-
holds choose between two zones: city centers (¢) and suburbs (s). Each zone offers
amenities («., a,) and implements different regulations. Housing supply in each zone

is somewhat inelastic, such that local rents r; are increasing in housing demand.
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Government Policies: Local governments in each zone i € {c, s} impose two
types of taxes: a uniform wage tax 7 and zone-specific housing taxes t;, which are
intended to proxy for value capture regulations. These correspond to our first princi-
pal component of housing regulations, and the interpretation is that regulations such
as mandatory inclusionary zoning can be seen as an implicit tax. In principle the
proceeds could be either redistributed to other residents (as in the case of affordable
housing units), captured as private benefits by local policymakers, or extracted by
the government for the purpose of public goods. We assume these benefits can be
extracted without penalty to produce government revenue. With these revenues, they
provide public services s; using labor inputs G; (compensated at the low-productivity
wage), while maximizing net revenue. Additionally, governments can impose mini-
mum housing requirements h;, which proxy for exclusionary zoning requirements.

For a household of type j in zone ¢, utility is given by:
Ul = max vlogc+ (1 —v)logh + a; —log(N;) + log(s;).
This optimization is subject to the budget constraint:
cth-ri=(1-7)-w
Local governments maximize revenue:

max [r+(1=9)-t] - (w" Nf +w™ - NfT) —w" - log(G))
izti»,i

subject to the minimum housing constraint (h) > h;) and a positive earnings
condition for local governments. Production opportunities are equally accessible from
both zones, so there are no reasons to sort for increasing wage income.

In spatial equilibrium, households sort across zones until indifferent, yielding:

Se Te 1+tc Nc
e — ] +log 28 = (1—~) |log —< +1 log —< 1
[oe — ] + 08 - (1—=7) ogrs+og1+ts +ogNS (1)

i.e., that the benefits of locating in one zone (based on local amenities and govern-

ment services) equal the costs of rents, housing taxes, and congestion disamenities.
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4.2 Optimal Policy Conditions

Exclusionary Zoning: Minimum housing requirements (h;) become binding when

they increase revenue by attracting high-productivity households:

o o
187% 78771'

ON;

For N; = wk - NE + wH - NH as the “effective” population, and similarly @; =
wi - n; +wk - (1 —mn;) as the effective wage, and n; = NHN—fNL as the high-income share
of total population.

Exclusionary zoning affects local government revenues through two channels. The
first term shows that local governments gain from attracting a higher share of high-
income workers. These workers are attracted to areas with minimum lot size require-
ments because they are subject to lower congestion disamenities. However, this loss

in population also reduces local government revenue in the second term.

Value Capture: Housing taxes (t;) become optimal when tax revenue gains out-
weigh population losses:
i

~ 0N
(1—7)‘Ni+5[7+(1—7)'ti]ZO.

Proposition 1. Urban Value Capture: Clity cores ¢ prioritize revenue extraction (t.).

In the model, city cores choose a positive housing tax requirement . to maximize
local revenues, and pick no exclusionary housing requirement. The intuition is that
city cores have a sufficiently high population of low-income workers, so the income
losses from an exclusionary housing requirement, and the resulting loss of the low-
income population, would exceed gains from gaining high-income population share.
However, if city cores have sufficiently high amenities relative to suburban areas
(e — ag), from indifference equation (1) we see this amenity differential can offset
higher housing costs, taxes, and congestion disamenities in the city core. This gives

urban centers leverage to extract value without depopulating the area.
Proposition 2. Urban zones with higher amenities have more revenue extraction.

This proposition follows a similar argument as the previous one. The core intuition

is that higher amenities increase residents’ willingness to pay for housing, generating
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economic rents which governments can profitably tap into. Again from equation 1 we
see that households accept higher housing costs (both due to rent and value capture
taxes) because these are offset by higher amenities. Therefore, the optimal ¢; rises
with a;: urban centers with higher amenities can impose even higher taxes without

losing residents, because leaving entails losing access to valuable local benefits.
Proposition 3. Suburban Exclusion: Suburbs s adopt stricter bulk requlations h,.

The key difference between urban cores and suburban areas lies in population
composition: when suburban areas have a substantially smaller population relative
to urban cores, they are able to shift to a concentrated tax base consisting only of
high-income workers through exclusionary zoning. The trade-off is that such strict
bulk regulations limit the total number of households (Ny), which lowers income-
based tax revenue. However, this loss in quantity can be offset fiscally by an increase
in per-household tax contribution, and also results in lower congestion costs, which

results in an additional motive for high-income workers to move to suburban areas.

Proposition 4. Suburban areas with fewer amenities have weakly stricter bulk regu-

lations.

In the model, local amenities and exclusionary zoning can work as substitutes.
This situation is not relevant if the local government is already at a corner solution
and has implemented a minimum house size requirement to exclude all low-income
residents. But if a suburban area is indifferent between imposing such a restriction or
not, lowering the presence of amenities will encourage the municipality to implement
such policies. The intuition is that a low «, raises the marginal benefit of exclu-
sion (i.e., attracting rich households), because the suburb can offset low taxation in

quantities by improving the quality of the tax base.

4.3 Connecting Model Predictions to Empirical Findings

We now discuss how the predictions of our model relate to our empirical findings.
Our first and third propositions predict where value capture and exclusionary zoning
will be most prevalent spatially. The first proposition predicts that value capture
will be higher in cities, where demand for living is highest and so the ability for
local governments to extract value is correspondingly higher as well. Consistent with

this result in the model, we find empirically that areas high in the first principal
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component are substantially larger, and also appear to be somewhat more centrally
located. By contrast, proposition three predicts that suburban areas will impose more
restrictive bulk regulations. We find that bulk regulations and the second principal
component are commonly found in suburban areas in the peripheries of those cities
across the United States, but are particularly pronounced in the Northeast.

These spatial regulatory patterns contribute to the sorting of Americans by age
and income. Cities are home to poorer residents that need access to smaller housing,
wealthy residents, as well as younger working households. By contrast, suburban
areas with exclusionary zoning requirements are typically home to richer households,
despite high commuting costs. Our results help to connect classic previous theories of
zoning. (Fischel, 1987) and (Hamilton, 1975, 1976) argue that housing regulation and
property taxes can create efficient public goods provision in the context of (Tiebout,
1956) sorting. By contrast, (Zodrow and Mieszkowski, 1986) argue instead that local
taxes are distortionary and function like excise taxes, while more recent scholarship
has emphasized the segregation motives of zoning, especially exclusionary zoning
(Rothstein, 2017; Cui, 2024). Our two types of municipal zoning regulations span
this prior literature, and helps to explain the circumstances under which housing
regulation can appear extractive, and the conditions under which they sustain local
public goods investment under exclusionary environments.

Our model also makes additional sets of predictions on the intensive margin of
such regulations, which align with our empirical findings. Proposition 2 predicts that
greater amenities should predict higher value capture, which is a strong pattern in our
data as well across amenities measured through different methods (natural amenities,
consumption amenities, and productive/job amenities). This close alignment between
empirical and model results further justifies our interpretation of the first principal
component as reflecting value extraction in high demand environments.

The model also helps us interpret our fourth fact concerning the regional nature of
exclusionary zoning patterns. In the model, exclusionary zoning can emerge in subur-
ban environments exposed to negative amenities. Our empirical results suggest that
the strongest patterns of exclusionary zoning emerged historically among Northeast-
ern (and to some extent Midwestern) municipalities exposed to local manufacturing,.
While we cannot separate the specific role of industrial pollutants and direct spillovers
versus exclusionary motives around the presence of manufacturing workers (many of

whom were immigrants or non-white); all plausible mechanisms entail such early in-
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dustrialization exposing smaller suburbs to some set of negative disamenities. Our
model helps therefore reconcile the motives for why such municipalities may pick

exclusionary zoning as a response to this disamenity shock.

5 Conclusion

Our paper introduces a new methodology we refer to as generative regulatory measure-
ment, which leverages LLMs to systematically interpret municipal zoning regulations
at scale. Our results demonstrate that LLMs can achieve near-human levels of accu-
racy in classifying zoning rules from textual documents, with accuracy levels of 96%
for binary questions and correlations of 0.87 on average relative to existing hand-
classifications. This approach enables the creation of a comprehensive nationwide
dataset of municipal zoning regulations. Our methodology opens up new avenues for
analyzing vast amounts of previously untapped regulatory documents across multiple
domains. With further development, this generative regulatory measurement frame-
work can be extended to other categories of housing regulation, regulations in other
domains, and even regulatory systems across different countries and languages.

By combining this measurement with a theoretical framework, we establish four
facts about housing regulation. Municipal zoning regulations are not well-summarized
by single dimensional measures of strictness, reflecting the myriad ways municipal-
ities have designed their zoning codes. Rather, two factors capture the bulk of the
systematic variation and represent value capture and exclusionary zoning. Urban
cores, especially those with high amenities, implement value capture regulations to
extract housing surplus to provide public goods. Conversely, suburban municipalities
adopt exclusionary zoning and strict bulk regulations, especially in the Northeast and
Midwest, a pattern which we connect to historical exposure to industrial production.

Our findings highlight the broader consequences of housing regulations on socioe-
conomic sorting and affordable housing. Suburban practices of exclusionary zoning
truncate the left part of the housing price distribution, which effectively prices out
lower-income and minority households from areas with high-quality public services.
Such households sort instead to urban cores, which also feature elevated housing costs
due to extractive housing regulations. Our findings therefore underscore the impor-
tance of zoning regulations as tools used by municipalities to manage growth, capture

value from residential demand, and impact demographic composition.
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Tables

Table 1: Sample Coverage

Panel A: Sample and Local Government Coverage Metrics

National Northeast Midwest South West

Coverage Metrics:

Total Munis 19,488 2,101 8,481 6,087 2,319
% of Munis in Sample 25 32 19 22 48
Total Townships 16,213 4111 12,102 0 0
% of Townships in Sample 6 23 0 - -
Total Pop. (Millions) 331 o7 69 127 7
% of Pop. Under Local Gov. 76 100 95 55 78

Panel B: % of Pop. Under Local Gov. Covered By Sample

National Northeast Midwest South West

Ordinance Aggregator:

American Legal Publishing 11 15 15 6 8
Municode 23 1 19 54 12
Ordinance.com 30 52 12 1 60
Total 63 68 46 61 80

Notes: This table highlights our sample coverage across region and data source.

For

local governments available in multiple datasets, we prioritize using Ordinance.com
and then Municode and reflect that in the population count. We also adjust for
geographical overlap between townships and municipalities in tallying population by
using census block level population data and corresponding shape files. We use pop-
ulation estimates from the 2022 Census of Governments for municipality population,
and 2022 State-Level Census Population Data for census region and national popu-

lation.

Links to data sources are American Legal Publishing, Municode, and Ordinance.com.
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Table 2: Performance Validation for LLM-Generated Zoning Classifications

Panel A: Continuous Questions

Question RSE Correlation
Zoning District Count 0.06 0.98
Longest Frontage 1.16 0.70
Lowest Res Min Lot Size 0.16 0.92
Cumulative Average 0.46 0.87
Cumulative Median 0.31 0.90

Panel B: Binary Questions

Question RSE % Accuracy
Multifamily Allowed 0.00 100%
Mixed-Use Buildings 0.07 96%
Conversion To Multifamily 0.08 96%
Townhouses Allowed 0.30 90%
Age-Restricted Provisions 0.14 96%
ADUs Allowed 0.09 96%
Flexible Zoning By Right 0.00 100%
Flexible Zoning By Permit 0.00 100%
Affordable Incentive 0.00 100%
Permit Cap Or Phasing 0.33 90%
Wetlands Restrictions 0.14 96%
Cumulative Average 0.11 96%
Cumulative Median 0.09 96%

Notes: This table calculates accuracy against a hand-classification by the Pioneer In-
stitute on a hold-out sample of 30 municipalities. In Panel A, we use Relative Squared
Error (RSE) which compares the model’s results to a naive model that guesses the
sample mean. The correlation column is the correlation between the model answer
and the Pioneer Institute answer. We calculate performance metrics and sample
means (for RSE) only on the set of question municipality pairs that GPT-4 Turbo
does not say “I don’t know.” We winsorize data from our models at the 1% level.
The Cumulative Average and Cumulative Median are calculated across questions. In
Panel B, for Relative Squared Error (RSE) we compare each model’s results to the
naive model that guesses the sample mode. The accuracy column is calculated as
the percent of municipalities where the model matches the Pioneer Institute answer.
We drop any errors where the answer is considered ambiguous. For details on adjust-
ments to the Pioneer data, see Figure A4. For full questions see Appendix Table AS8.
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Table 3: Decomposition of Model Accuracy

Panel A: Continuous Questions

Correlation I Don’t Know Rate
Model Specification Mean Std. Dev. Mean Std. Dev.
RAG Strategies (+ No Prompting)
Gemini Flash No RAG 0.74 0.01 38.7% 2.3
Gemini Flash + Basic RAG 0.66 0.03 32.7% 1.7
Gemini Flash + Full RAG 0.84 0.02 12.9% 0.6
Prompting Strategies (4 Full RAG)
GPT-4 Turbo No Prompting 0.72 0.05 2.7% 0.6
GPT-4 Turbo + Prompt Engineering 0.78 0.05 2.9% 1.3
GPT-4 Turbo + Background Info 0.73 0.11 2.2% 1.4
GPT-4 Turbo + Prompt Chaining 0.87 - 4.4% -

Panel B: Binary Questions
Accuracy I Don’t Know Rate

Model Specification Mean Std. Dev. Mean Std. Dev.
RAG Strategies (+ No Prompting)
Gemini Flash No RAG 81.0% 1.24 21.1% 1.0
Gemini Flash + Basic RAG 84.5% 1.18 22.0% 1.7
Gemini Flash + Full RAG 86.2% 0.87 18.6% 0.8
Prompting Strategies (4 Full RAG)
GPT-4 Turbo No Prompting 83.5% 1.4 14.2% 5.3
GPT-4 Turbo + Prompt Engineering 86.0% 0.8 10.7% 14
GPT-4 Turbo + Background Info 93.9% 1.0 1.1% 0.2
GPT-4 Turbo -+ Prompt Chaining 96.7% - 0.0% -

Notes: This Table reports the accuracy of LLM-generated regulatory classifications
against hand-classified data for 30 municipalities from the Pioneer Institute. To
quantify accuracy, we calculate the mean and standard deviation across five runs of
each specification. See Appendix Section B for more details on sources of variation
across runs. We manually verified disagreements between our headline specification
(GPT-4 Turbo Full RAG + Full Prompting) and the Pioneer dataset, so we only
run this specification once. See Figure A4 for more details on error adjustments.
All accuracy statistics are calculated on the disagreement adjusted testing sample.
Gemini Flash refers to Gemini Flash 1.5.
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Table 4: National Sample Question Means

Panel A: Continuous Questions

Question Mean Weight Count
Zoning District Count 14 19 5,471
Longest Frontage 92 69 5,213
Highest Res Min Lot Size* 52 45 5,424
Lowest Res Min Lot Size* 10 6 5,440
Mandatory Approval Steps 4.5 4.3 5,791
Distinct Approval Bodies 3.1 3.0 5,759
Max Review Waiting Time 218 211 5,109

Panel B: Binary Questions

Question Mean Weight Count
Multifamily Allowed 95 99 5,703
Mixed-Use Buildings 63 71 5,717
Conversion To Multifamily 14 20 5,766
Townhouses Allowed 80 89 5,795
Age-Restricted Provisions 45 60 5,129
ADUs Allowed 33 39 5,781
Flexible Zoning By Right 9 10 5,797
Flexible Zoning By Permit 80 80 5,679
Affordable Incentive 24 50 5,540
Permit Cap Or Phasing 17 18 5,803
Wetlands Restrictions 10 7 4,617
Affordable Mandate 7 10 5,784
Public Hearing Requirements 30 32 5,709

Notes: This table reports the averages of sample questions from our generated na-
tional regulatory dataset across a range of demographic associates. We define the
count (sample size) as the number of municipalities where the model does not say “I
don’t know” as the answer. The “Weight” column weights each municipality by its
population in the 2022 census of governments. For continuous questions we upper
winsorize at the 1% level for frontage, minimum lot sizes, and maximum potential
review waiting time. *Min lot size variables expressed in thousands of square feet.
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Table 5: Loadings on Principal Components

First Second Third Fourth Fifth

Affordable Incentive 0.42 0.10 0.38 0.08 -0.03
Affordable Mandate 0.32 0.11 0.46 0.15  -0.05
Age-Restricted Provisions 0.31 0.00 0.20 -0.11  -0.04
Zoning District Count 0.30  -0.20 0.00 -0.15 0.04
Wetlands Restrictions 0.23 0.20 -0.10  -0.24  -0.06
Permit Cap Or Phasing 0.22 0.03 -0.06 0.19 0.26
Highest Res Min Lot Size 0.19 0.37 -0.23  -0.15  0.02
Longest Frontage 0.17 0.40 -0.22  -0.15  -0.08
Public Hearing Requirements 0.15 0.11 0.18 0.34  -0.01
Max Review Waiting Time 0.12 0.03 -0.06 0.40 -0.21
Lowest Res Min Lot Size 0.05 0.47 -0.19  -0.05  0.03
Distinct Approval Bodies 0.02 0.02 -0.37 036 -0.10
Mandatory Approval Steps 0.01 0.10 -0.15  0.56  -0.26
No Conversion to Multifamily -0.09  0.00 0.13 0.24 0.68
No Flexible Zoning By Right -0.13  0.04 0.26 -0.06  -0.49
Multifamily Not Allowed -0.14  0.35 0.08 0.07  0.21
No Mixed-Use Buildings -0.21  0.29 0.22 0.05 0.11
Townhouses Not Allowed -0.23  0.33 0.12  -0.03 0.00
ADUs Banned -0.30  -0.02 0.07 0.10 -0.12
No Flexible Zoning By Permit -0.31  0.20 0.32 -0.04  -0.12

Notes: This table reports loadings between the first five principal components of our
regulatory dataset and specific regulatory questions. We upper winsorize at the 1%
level the values for highest residential minimum lot size, lowest residential minimum
lot size, longest frontage requirement, and maxaximum review waiting time. We
transform the highest residential min lot size variable into a dummy for whether
it is above one acre. Missing data, where the model output “I don’t know,” were
imputed with k-nearest neighbors. Prior to performing principal component analysis,
all variables were normalized into z-scores. Additionally, each variable was expressed
in terms of its expected univariate association with stricter zoning policies, such that
more positive values indicate a greater degree of restrictiveness. For example, the
variable representing the allowance of multi-family housing was inverted, so that a
more positive value indicates that multi-family housing is not permitted, while a more
negative value suggests that it is not.
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Table 6: Economic and Social Correlates of Housing Regulatory Dimensions

First PC Second PC
No FE Metro FE No FE Metro FE

Fundamental Amenities (County Level)

Index 0.52 (0.02) 20.02 (0.02)
— Natural Amenities 0.27 (0.02) 0.01 (0.02)
— Retail Establishments 0.46 (0.02) -0.03 (0.02)
— Log Patents Per Capita  0.37 (0.02) -0.01 (0.02)

Socioeconomic Characteristics (Local Government Level)

Index 0.21 (0.01)  0.09 (0.03) 0.37 (0.01) 0.26 (0.03)
— % Mid to High Income  0.20 (0.01)  0.12 (0.03) 0.24 (0.01)  0.18 (0.03)
~ White Share 20.03 (0.01) -0.03 (0.03) 0.22 (0.01)  0.22 (0.03)
— % Households Over 35 0.06 (0.01) -0.07 (0.03) 0.38 (0.01) 0.26 (0.03)
— College Degree Share 0.27 (0.02)  0.16 (0.03) 0.27 (0.01) 0.13 (0.03)

Government Services (Local Government Level)

Index 0.24 (0.02) 0.12 (0.04) 0.36 (0.02) 0.16 (0.03)
— Math Test Scores 0.23 (0.01) 0.16 (0.03) 0.29 (0.01) 0.16 (0.02)
~ Local Rev. Per Student  0.14 (0.03)  0.01 (0.07) 0.32 (0.06) 0.17 (0.06)

) (0.01)

— Total Rev. Per Capita  0.11 (0.02) 0.04 (0.03) 0.08 (0.01) -0.04 (0.01)

Housing Density (Local Government Level)

Index 0.05 (0.01)  0.04 (0.05) -0.37 (0.02) -0.36 (0.04)
~ Housing Unit Density ~ 0.01 (0.01) -0.07 (0.04) -0.17 (0.03) -0.24 (0.06)
~ 9% Structures > 2 Units  0.13 (0.01)  0.10 (0.04) -0.32 (0.01) -0.35 (0.03)
~ Share Rental Units -0.02 (0.01)  0.04 (0.04) -0.41 (0.01) -0.33 (0.03)

Geographic Attributes (Local Government Level)

Index -0.29 (0.01) -0.28 (0.03) -0.16 (0.01) 0.12 (0.02)
- Log Land Area 0.47 (0.01)  0.47 (0.03)  0.07 (0.01) -0.05 (0.05)
~ Log Near Neighbors 0.17 (0.01)  0.29 (0.06) 0.21 (0.01) -0.06 (0.03)

~ Log Miles Metro Center -0.14 (0.01) -0.07 (0.04) -0.03

—~

0.01) 0.10 (0.03)

Political Characteristics (Local Government Level)
Percent Democrat 0.27 (0.01) 0.17 (0.04) 0.02 (0.01) -0.22 (0.04)

Notes: All variables are normalized. Standard errors (parentheses) are clustered at
metro/state level when including fixed effects. County regressions use population
weights to aggregate. Category indices are first PCs of their listed components.
See Appendix Table A7 for more components and Appendix Table A1 for variable
definitions.
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Figures

Figure 1: Model Overview
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Notes: We chunk ordinances by most granular organization (usually subsection) and
ensure each chunk is between 50 to 1000 tokens by splitting and joining adjacent
sections when needed. We embed each chunk using “text-embedding-3-large” (link).
We use Amazon Textract to transcribe tables when necessary. We elicit an open-
ended response to each question first and then use function calling to parse out a
structured answer. Ordinances from digital aggregators are either entirely about
zoning, partially about zoning (i.e., have one or more sections about zoning), or not
about zoning at all. We filter out ordinances not at all about zoning by searching for

key phrases, table headers, and zoning district names (i.e., R-1 for the first residential
zoning district).
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Figure 2: Embeddings of Municipal Code Sections
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Notes: This Figure shows the two-dimensional UMAP projection of embeddings from
sections of municipal codes for Arlington, Massachusetts.
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Figure 3: Statistical Tests For Number of Principal Components
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Panel A: We simulate eigenvalues following the RnD-Lambda method Peres-Neto
et al. (2005). Specifically, we shuffle each column (regulation) in the dataset n =
999 times and calculate the eigenvalues for each simulated dataset. These estimates
represent eigenvalues if the variables (regulation) were uncorrelated. We plot the
95th percentile of these eigenvalues across simulations. "Actual" plots the eigenvalues
for each principal component in the original data along with the percent variation
explained by each (as seen in Table 5).

Panel B: We use Velicer’'s MAP test as specified in Velicer et al. (2000). The number of
principal components that minimizes the average squared and fourth power pairwise
correlation between regulations after we partial out principal components is two.
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Figure 4: Regulatory Dimensions and Housing Market Dynamics

Panel A: First Principal Component (Value Capture)
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Panel B: Second Principal Component (Exclusionary Zoning)
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Notes: This Figure illustrates the relationship between two principal components
of housing regulation and key housing market outcomes. Panel A shows the first
principal component, associated with value capture. Panel B displays the second
principal component, which corresponds to exclusionary zoning practices. The x-
axis in both panels represents the percentile of median housing value, drawn from
the 2022 ACS, while the y-axis measures the percentile of units permitted per capita
(averaged from 2019-2023) from the Building Permits Survey. Darker colors illustrate
a larger correlation in the heatmap between each regulatory principal component and
each coordinate of prices and building. The right figures show the overall correlation
between each quadrant of the space of housing prices and quantities and the regulatory
outcome.
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Figure 5: Second Principal Component and Housing Affordability
Panel A: Share Units Affordable Panel B: Median Home Value
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Notes: In Panel A, rental units are affordable if monthly rent is < 30% of state
median monthly income; owner-occupied units if value is < 3x state median annual
income. In Panel C, we compare home value distributions for municipalities in the
top and bottom 25% of the second principal component (PC) for owner-occupied
units, focusing on those with median values $200k-$500k (where overlap in Panel B
is greatest). Within four ACS value ranges in this band, we compute the difference
in probability mass for each ACS home value bin between high- and low-PC munic-
ipalities, collapsing all values < $100k to a $50k midpoint bin. The z-axis measures
the percent difference between the bucket’s midpoint and each ACS bin midpoint;
the y-axis is the probability mass difference. Panel D shows correlations between the
second PC and owner-occupied share (0.41) and low-income family share (—0.24).
All data is sourced from the 2022 American Community Survey.
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Figure 6: Spatial Variation of Zoning Regulations Relative to Metropolitan Centers

Incentives or Mandates For Affordable Housing
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Notes: We plot regulatory variables at the local government level based on the dis-
tance from the center of the respective metro, defined as city hall. We show whether
a city has an affordable housing incentive or mandate; the minimum lot size; the first
principal component of housing regulation (value capture), and the second principal
component of housing regulations (exclusionary zoning).
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Appendix: Additional Graphs and Tables

Figure A1l: Measuring Housing Process Variation
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Notes: This Figure plots population weighted averages of four LLM-generated process

regulations at the census region level.
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Figure A2: Distribution of Ordinance Lengths

Distribution of Token Counts in All Local Governments
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Notes: This figure shows the token count distribution for ordinances in our sample.
Vertical dashed lines mark maximum context lengths (in tokens) for popular LLMs.
Counts use the GPT-4 Turbo tokenizer (c1100k_base).

Figure A3: Comparison of Human vs. LLM Cost
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Notes: This figure compares costs of human vs. LLM zoning analysis. Assumptions:
(1) Lawyers: 5 min per question—municipality at $50/hr; (2) RAG: 4,000 input + 500
output tokens/call at $5 per million input tokens and $15 per million output tokens;
(3) Prep: $390/question (lawyer time for 60 municipalities, 10 hr at $140 to train
model); (4) Scraping/cleaning/embedding: $2.80/municipality; (5) No-RAG: 330,000
input tokens/question—municipality.
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Figure A4: Sources of Discrepancy Between LLM and Human Classifications of Zon-

ing Regulations
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Notes: This Figure reports reasons for disagreement between our generated model
data from GPT-4 Turbo and the original version of the Pioneer Institute data for
binary questions. We first ran GPT-4 Turbo on the testing sample of 30 randomly
selected municipalities that were included in the Pioneer Institute’s study but were not
used to train our model. We then identified the binary questions where the model
responses disagreed with the Pioneer study. A law student reviewed each of these
disagreements individually to determine the reason for the discrepancy, classifying
them into the categories shown in the chart. When measuring the performance of the
model we adjust for disagreements where the Pioneer study was outdated /incorrect

and also drop ambiguous cases.
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Figure A5: Relationship between First and Second Principal Components

Second Principal Component

First Principal Component

Notes: This scatter plot illustrates the relationship between the first two principal
components of our zoning regulation analysis across U.S. municipalities. The x-axis
represents the first principal component (PC1), which we interpret as a measure
of value capture. The y-axis shows the second principal component (PC2), which
corresponds to exclusionary zoning practices. Each point represents a municipality.
Municipalities in the upper right quadrant tend to have both value capture and more
exclusionary practices, while those in the lower left capture less value and exclude
less.

54



Figure A6: Nationwide Maps of Population-Weighted Averages
Panel A: First PC Panel B: Second PC
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Notes: This Figure plots regulatory variables by state, weighted by local municipality
population. We use the 2022 ACS Population as the population weight. Hawaii is
grey because only one municipality (Honolulu) is in the dataset.
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Figure A7: Granular County Amenities Correlations with Principal Components
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Notes: This Figure shows the correlation of the first principal component of regula-
tory variables against a range of amenities. Retail establishment data are taken from
the U.S. Census Bureau’s County Business Patterns (CBP) 2022 dataset. Correla-
tions are calculated at the county level, with the number of establishments for each
industry normalized to per capita measures using county population estimates. Prin-
cipal Component indices are population-weighted averages of municipality level data,
aggregated to the county level. Industries are classified using 2017 NAICS codes.
Natural amenity data comes from USDA county natural amenities dataset.



Figure A8: Minimum Lot Size Distribution

Panel A: Lowest Residential Minimum Lot Size
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Notes: This histogram shows the distribution of minimum lot size requirements across
local governments. The x-axis represents lot size in square feet, with key thresholds
labeled. The y-axis shows the percentage of local governments falling into each lot size
category. Vertical lines mark important thresholds: 5,000 sq ft (common suburban lot
size), 10,000 sq ft (quarter-acre), and 21,780 sq ft (half-acre). We measure minimum
lot sizes across all residential districts, and show the lowest such requirement within
a municipality in Panel A, and the highest such requirement in Panel B. The x-axis
in Panel B stops at 100 thousand square feet, though 12% of local governments have
highest residential minimum lot sizes above this level.
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Figure A9: Spatial Autocorrelation of Zoning Regulations and Indices
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Notes: This figure displays Moran’s [ spatial autocorrelation statistics for various zon-
ing regulations and indices. Moran’s I measures the degree to which similar values
cluster spatially, with values closer to 1 indicating stronger positive spatial autocor-
relation.
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Figure A10: Extra Second Principal Component Correlations
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Notes: Panel C presents correlations between the second PC and measures of home
value dispersion across different median home value bins. The correlation with the
25th percentile home value reflects the absolute percent difference from the median,
so a negative correlation indicates that higher-second PC municipalities have a leaner
left tail, with the 25th percentile closer to the median. Similarly, a negative corre-
lation with the 75th percentile means that the right tail is also compressed. The
interquartile range correlation captures the combined effect of these shifts, with neg-
ative values indicating an overall tighter home value distribution in higher-second PC
municipalities.
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Figure A11: Second PC and Rent by Number of Bedrooms

Correlation Between Second PC and Rent by Category and Specification
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Notes: This Figure plots the correlation between various rent measures and the second
principal component of our housing regulatory dataset both with raw values (blue)
and demeaned at the MSA level. Rent measures come from the 2022 ACS. “Overall” is
the median gross rent value (B25064 001E), while other categories are median gross
rents conditioned on number of bedrooms in the housing unit (i.e. B25031 003E for
median gross rent for one-bedroom apartments).
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Figure A12: Pairwise Correlations Between Zoning Questions
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Notes: This heatmap illustrates the pairwise correlations between various zoning reg-
ulations across U.S. municipalities. Each cell represents the correlation coefficient
between two zoning measures, with color intensity indicating the strength and di-
rection of the relationship. Darker red indicates stronger positive correlations, while
darker blue represents stronger negative correlations. White or light-colored cells
suggest weak or no correlation. See Appendix Table AS for full question names. See
Table 4 footnote for details on sample construction.
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Table Al: Variable Definitions

Variable Source Definition

Housing Unit Den- 2022 ACS Number of housing units divided by

sity area from shape files.

Share Families Low 2022 ACS Share of families with income below

Income 80% of the state median income.

Share Population 2022 ACS The percentage of the population aged

65 and Over 65 and over.

Share Units Afford- 2022 ACS % of units affordable at state median

able income (rent < 30% of monthly income;
value < 3x annual income).

Local Revenue Per 2022 Annual Local revenue for a school district di-

Student

Log Land Area
Miles Metro Center
Log Near Neigh-
bors

Units  Permitted
Per Capita

1940 Foreign Born
Share
1940
turing
Share

1940 Owner Occu-
pied Share

Manufac-
Workforce

Log Patents Per

Capita

Survey of School

System Finances

2022 Census
Shapefiles
2022 Census
Shapefiles
2022 Census of

Governments

BPS

NHGIS

NHGIS

NHGIS

USPTO

vided by the enrollment of that school
district spatially merged to local gov.
borders.

The area in acres of a local government
with a log transform.

Number of miles from the town cen-
troid to the center of metropolitan area.
The number of other local govs within
25 miles of a local govs border.

The number of housing units permitted
per capita averaged over 2019-2023.

Share foreign born

Ratio of the number of annual aver-
age wage earner in manufacturing to all
those employed.

Share of all housing units owner occu-
pied.

Domestic patents granted between

2000-2015, normalized by population.
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Variable

Source

Definition

Percent Democrat
Year of Incorpora-
tion

Property Tax Rate

Total Revenue Per
Capita
Math Test Scores

Natural Amenities

Index

Opportunity Index

1940 Housing Unit
Density

Retail  Establish-

ments

(Bryan, 2022)
(Goodman,
2023)

(Pierson et al.,

2015)

(Pierson et al.,
2015)
(Reardon et al.,
2024)

(Service, 2019)
(Chetty et al.,
2025)

(Markley et al.,
2022)

County Business

Patterns Survey

Share Democrat votes in 2020.

The year a municipality was incorpo-
rated. Not available for townships.
Total property tax revenue in 2017 di-
vided by the aggregate home value in
2017 ACS.

Total local government revenue nor-
malized by population.

The average math test score pooled
grades (3rd-8th) and years
(2008-2019).

First principal component of various

aCross

climate, topography, and water area
features.

Kid family rank merged from census
tracts to local governments using Geo-
COrT.

1940 housing units per square mile in
2010 tract borders merged to local gov-
ernments with geocorr.

First principal component of number of
retail establishments of each type per

capita.

Notes: The following variables are from the 2022 American Community Sur-

vey (ACS): households over 35, % structures > 2 units, commute 30 minutes

or longer, college degree share, foreign born share, median gross rent, median

home value, owner occupied, share mid to high income, share population un-

der 18, share rental units, vacancy rate, and White share. USPTO refers
to the United States Patent and Trademark Office; NHGIS is the National
Historical Geographic Information System; CBP is the County Business Pat-
terns dataset; BPS is the Building Permits Survey dataset; and 2022 ACS

refers to the 2022 American Community Survey dataset.
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Table A2: Question Level Accuracy Contributions From Prompting

Panel A: Binary Questions
Accuracy (%)

Question No Prompting Prompt Background Prompt
Eng. Info Chaining
ADUs Allowed 86.1% 99.0% 96.7% 96.7%
(3.9) (2.1) (0.0) (-)
Flexible Zoning By Right 100.0% 100.0% 100.0% 100.0%
(0.0) (0.0) (0.0) (-)
Flexible Zoning By Permit 96.0% 94.8% 95.8% 100.0%
(0.3) (3.4) (2.9) (-)
Affordable Incentive 81.4% 86.6% 99.3% 100.0%
(2.5) (1.9) (1.5) (-)
Permit Cap Or Phasing 83.3% 67.1% 91.3% 90.0%
(0.0) (5.2) (1.8) (-)
Wetlands Restrictions 76.0% 90.6% 92.7% 96.7%
(1.5) (5.6) (1.5) (-)
Multifamily Allowed 93.0% 94.7% 95.3% 100.0%
(2.3) (1.8) (3.0) (-)
Mixed-Use Buildings 79.7% 91.4% 92.6% 96.7%
(7.5) (2.9) (1.5) (-)
Conversion To Multifamily 59.5% 60.8% 88.0% 96.7%
(1.3) (4.1) (3.8) (-)
Townhouses Allowed 73.6% 68.1% 82.6% 90.0%
(6.2) (1.5) (2.8) (-)
Age-Restricted Provisions 89.5% 93.4% 98.6% 96.7%
(5.1) (2.9) (1.9) (-)
Panel B: Continuous Questions
Correlation
Question No Prompting Prompt Background Prompt
Engineering Info Chaining
Zoning District Count 0.88 0.95 0.94 0.98
(0.03) (0.03) (0.02) (-)
Longest Frontage 0.50 0.53 0.46 0.70
(0.10) (0.12) (0.07) (-)
Lowest Res Min Lot Size 0.80 0.87 0.79 0.92
(0.11) (0.04) (0.29) (-)

Notes: See Table 3 for more details.
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Table A3: Confusion Matrix For Binary Performance Results

True False True False True False Precision
Positive  Positive  Negative Negative Positive  Positive
Rate Rate

Question
Multifamily Allowed 28 0 2 0 1.00 0.00 1.00
Mixed-Use Buildings 15 0 14 1 0.94 0.00 1.00
Conversion to Multifamily 12 1 17 0 1.00 0.06 0.92
Townhouses Allowed 18 1 9 2 0.90 0.10 0.95
Age-Restricted Provisions 22 0 7 1 0.96 0.00 1.00
Accessory Apartments Allowed 18 0 11 1 0.95 0.00 1.00
Flexible Zoning by Right 1 1 27 0 1.00 0.04 0.50
Flexible Zoning by Permit 26 0 3 0 1.00 0.00 1.00
Affordable Housing 22 0 7 0 1.00 0.00 1.00
Permit Cap or Phasing 8 2 19 1 0.89 0.10 0.80
Wetlands Restricted in Lot-Size Calc 23 1 6 0 1.00 0.14 0.96
Total 193 6 122 6 0.97 0.05 0.97

Notes: This table shows a confusion matrix of model accuracy for binary variables. True Positive refers to an outcome
where the model correctly predicts the positive class. False Positive is an outcome where the model incorrectly predicts
the positive class. True Negative denotes an outcome where the model correctly predicts the negative class. False Negative
represents an outcome where the model incorrectly predicts the negative class. The true positive rate (also known as
sensitivity or recall) is the proportion of actual positive cases correctly identified by the model. The false positive rate
(also known as the false alarm rate or fall-out) is the proportion of actual negative cases incorrectly identified as positive
by the model. Precision (also known as positive predictive value) is the proportion of positive identifications that are
actually correct. See Panel B footnote of Table 2 for details about the sample.
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Table A4: Further Manual Validation

Panel A: Process Questions on Nationwide Random Sample of 30 Municipalities

Question Description Correct Ambiguous Incorrect Correct (Non-Ambiguous %)
Public Hearing Requirements  80% 10% 10% 89%
Max Review Waiting Time 87% 13% 0% 100%
Mandatory Approval Steps 93% ™% 0% 100%
Distinct Approval Bodies 80% 13% ™% 92%
Panel B: Bulk Questions on Random Sample of 30 California Municipalities
Question Description Correct Ambiguous Incorrect Correct (Non-Ambiguous %)
Lowest of Residential Min Lot Sizes  83% 6% 10% 89%
Longest Frontage Requirement 80% 10% 10% 89%

Notes: In Panel A we randomly drew 30 municipalities from our national dataset and had a law student review each
answer. For Panel B, we drew a random sample of 30 municipalities from California and had a law student review each
answer. Answers that are ambiguous include situations where the bulk regulations depend on whether a lot is interior or
corner and the model chose one of the cases that could be correct. The column “Correct (Non-Ambiguous %)” calculates
the percentage of correct responses among non-ambiguous cases. See Table A8 for full detailed versions of questions.
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Table Ab: Housing Regulation and Housing Supply Elasticity

Dependent Variable: First Principal Component Second Principal Component
New Housing Unit Elasticity -0.43 -0.17 -0.74 -0.10
(0.05) (0.09) (0.05) (0.10)
Share Land Developed (2001) -0.87 -0.28 -2.23 -0.90
(0.11) (0.23) (0.12) (0.23)
Squared Share Land Developed (2001)  0.38 -0.05 1.26 0.41
(0.08) (0.15) (0.08) (0.15)
Share Land Flat Plains 0.01 0.03 0.19 0.12
(0.03) (0.05) (0.03) (0.07)
Log Miles to Metro Center -0.10 -0.08 -0.15 -0.09
(0.02) (0.03) (0.02) (0.03)
Intercept 0.14 -0.49 0.06 1.45
(0.02) (0.07) (0.02) (0.06)
R-squared 0.06 0.20 0.17 0.40
N 3890 3890 3890 3890
Metro Fixed Effects No Yes No Yes

Notes: This specification has as the dependent variable the first regulatory principal component (value capture, first
two columns) and the second regulatory principal component (exclusionary zoning, second two columns). We regress
these variables against a range of variables relating to new housing production and land availability. All variables are
normalized to z-scores for the regression. Housing elasticity controls follow Baum-Snow and Han (2024) and include
fraction of land developed in 2001, squared fraction of land developed in 2001, and the fraction of land with a flat
topography. Metro fixed effects include state fixed effects for municipalities not within 100 miles of a metro center.
Standard errors are shown in parentheses. Standard errors are clustered at the metro level when using metro fixed effects

and are robust otherwise.
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Table A6: Predicting Housing Market Outcomes With Zoning Regulation

Residential Permits per Capita

Share Housing Units Affordable

XGBoost LASSO Bivariate XGBoost LASSO Bivariate
Affordable Mandate 100 -0.00 (0.02) 51 -0.02 -0.05 (0.01)
Lowest Res Min Lot Size 22 0.01 (0.02) 100 -0.11 -0.18 (0.01)
Highest Res Min Lot Size 9 0.02 (0.02) 85 -0.06  -0.15 (0.01)
Multifamily Not Allowed 10 0.00 (0.02) 80 -0.09 -0.13 (0.01)
Affordable Incentive 32 0.02 (0.02) 52 -0.01 -0.06 (0.01)
Age-Restricted Provisions 17 0.00 (0.02) 62 -0.02 (0.01)
Wetlands Restrictions 22 0.01 (0.02) 55 -0.05 -0.10 (0.01)
Max Review Waiting Time 25 0.02 (0.01) 45 -0.02 (0.01)
No Mixed-Use Buildings 18 -0.02 (0.02) 52 -0.00 -0.03 (0.01)
Longest Frontage 26 0.01 (0.02) 40 -0.04 -0.12 (0.01)
Zoning District Count 11 0.00 0.06 (0.01) 53 -0.03 -0.05 (0.01)
Townhouses Not Allowed 9 -0.03 (0.02) 55 -0.00 (0.01)
No Conversion to Multifamily 16 0.02 (0.02) 43 -0.03 (0.01)
Mandatory Approval Steps 13 0.03 (0.02) 42 -0.00 -0.04 (0.01)
Permit Cap Or Phasing 14 0.03 (0.02) 40 -0.00 -0.04 (0.01)
Public Hearing Requirements 8 0.04 (0.02) 46 0.01 (0.01)
Distinct Approval Bodies 12 0.01 (0.02) 41 -0.02 (0.01)
ADUs Banned 18 20.05 (0.02) 33 0.08  0.12 (0.01)
No Flexible Zoning By Right 14 0.00 (0.02) 32 002  0.06 (0.01)
No Flexible Zoning By Permit 9 -0.05 (0.02) 31 0.02 0.06 (0.01)

Notes: Residential permits are averaged over 2019-2023. Rental units are affordable if monthly rent is < 30% of state
median monthly income; owner-occupied units if value is < 3x state median annual income. XGBoost scores are the
“gain” importance, normalized so the most important feature has a score of 100. All variables are demeaned at the metro
or state level. We use imputed regulations when missing for LASSO and Bivariate, see footnote of Table 5, and allow

XGBoost to both impute and predict. Standard errors are in parentheses for bivariate.



Table A7: Other Associates of Principal Components

First PC Second PC
No FE Metro FE No FE Metro FE
Year of Incorporation 0.01 -0.06 0.10 0.13
(0.01) (0.02) (0.01) (0.02)
Property Tax Rate 0.06 -0.03 0.07 -0.12
(0.01) (0.02) (0.02) (0.02)
Vacancy Rate -0.15 -0.15 0.04 0.06
(0.01) (0.03) (0.01) (0.02)
% with Commute Over 30 Minutes  0.13 -0.04 0.24 0.12
(0.01) (0.03) (0.01) (0.03)
Share Population Under 18 -0.07 0.00 -0.11 -0.02
(0.01) (0.02) (0.01) (0.02)
Share Population 65 and Over -0.07 -0.10 0.16 0.14
(0.01) (0.02) (0.01) (0.02)
Median Home Value 0.18 -0.04 0.28 0.27
(0.02) (0.07) (0.02) (0.03)
Median Gross Rent 0.29 0.13 0.22 0.15
(0.02) (0.05) (0.01) (0.03)
Foreign Born Share 0.16 0.07 -0.04 -0.17
(0.02) (0.04) (0.01) (0.03)
Units Permitted Per Capita 0.09 0.06 -0.03 0.00
(0.02) (0.02) (0.01) (0.01)
% Structures Built Before 1970 -0.19 -0.28 0.06 -0.09
(0.01) (0.04) (0.01) (0.03)
Share Units Affordable -0.32 -0.16 -0.29 -0.20
(0.01) (0.03) (0.01) (0.04)
Opportunity Index 0.08 0.00 0.24 0.16

(0.01)  (0.03)  (0.01)  (0.03)

Notes: All right-hand side variables are measured as Z-scores. Fixed effects are for

metros with State FE for municipalities not within 100 miles of a metro center.
Standard errors are shown in parentheses. We cluster standard errors at the
metro/state level when including metro fixed effects and use robust standard errors
otherwise. Results for other covariates can be found in Table 6.
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Table A8: Mapping of Full Binary Questions to Short Names

Full Question Short Question ID
Is multi-family housing allowed, either by right or special permit (including Multifamily Allowed 4
through overlays or cluster zoning)?

Are apartments above commercial (mixed use) allowed in any district? Mixed-Use Buildings 5
Is multi-family housing listed as allowed through conversion (of either single Conversion To Multifamily 6
family homes or non residential buildings)?

Are attached single family houses (townhouses, 3+ units) listed as an al- Townhouses Allowed 8
lowed use (by right or special permit)?

Does zoning include any provisions for housing that is restricted by age? Age-Restricted Provisions 9
Are accessory or in-law apartments allowed (by right or special permit) in ADUs Allowed 11
any district?

Is cluster development, planned unit development, open space residential Flexible Zoning By Right 13
design, or another type of flexible zoning allowed by right?

Is cluster development, planned unit development, open space residential Flexible Zoning By Permit 14
design, or another type of flexible zoning allowed by special permit?

Does the zoning bylaw /ordinance include any mandates or incentives for Affordable Incentive 17
development of affordable units?

Is there a town-wide annual or biannual cap on residential permits issued, Permit Cap Or Phasing 20
and /or is project phasing required?

Are there restrictions on counting wetlands, sloped land or easements in lot Wetlands Restrictions 21
size calculations?

Do developers have to comply with the requirement to include affordable Affordable Mandate 18
housing, however defined, in their projects?

Are there townwide requirements for public hearings on any type of multi- Public Hearing Requirements 32

family residential projects?

Notes: See Appendix Table A9 for mapping of continuous questions.
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Table A9: Mapping of Full Continuous Questions to Short Names

Full Question Short Question ID
What is the lowest residential minimum lot size? Lowest Res Min Lot Size 28Min
What is the highest residential minimum lot size? Highest Res Min Lot Size 28Max
How many zoning districts, including overlays, are in the municipality? Zoning District Count 2
What is the longest frontage requirement for single family residential devel- Longest Frontage 22
opment in any district?

How many mandatory steps are involved in the approval process for a typical Mandatory Approval Steps 30
new multi-family building?

For a typical new multi-family building project in this jurisdiction, how Distinct Approval Bodies 31
many distinct governing bodies or agencies must give mandatory approval

before construction can begin?

What is the maximum potential waiting time (in days) for government Max Review Waiting Time 34

review of a typical new multi-family building?




Table A10: Housing Regulation Intensity and Distance from Metropolitan Centers

US Census Region
West Northeast Midwest South

All

Variable

First PC -0.10 (0.06) 0.09 (0.06) -0.23 (0.08) -0.16 (0.05) -0.07 (0.04)
Second PC 0.06 (0.08)  0.22 (0.04) 0.06 (0.03) 0.03 (0.04) 0.10 (0.03)
Reg 11 -0.11 (0.07) 0.13 (0.04) -0.10 (0.06) -0.07 (0.03) -0.02 (0.03)
Reg 13 -0.03 (0.05)  0.06 (0.04) -0.07 (0.05) -0.02 (0.04) -0.01 (0.02)
Reg 14 0.01 (0.04) 0.10 (0.06) -0.09 (0.04) -0.03 (0.04) 0.01 (0.03)
Reg 17 -0.04 (0.07) 0.00 (0.05) -0.21 (0.09) -0.17 (0.04) -0.07 (0.03)
Reg 18 -0.01 (0.04) -0.01 (0.02) -0.07 (0.06) -0.03 (0.04) -0.01 (0.01)
Reg 2 -0.18 (0.07) -0.06 (0.07) -0.24 (0.08) -0.22 (0.05) -0.17 (0.04)
Reg 20 -0.02 (0.03) 0.03 (0.02) -0.07 (0.02) -0.00 (0.02) -0.01 (0.01)
Reg 21 -0.03 (0.07) 0.14 (0.04) -0.03 (0.05) -0.03 (0.05) 0.04 (0.03)
Reg 22 0.03 (0.06) 0.18 (0.03) -0.03 (0.07) -0.03 (0.04) 0.06 (0.03)
Reg 28Max  0.00 (0.05)  0.19 (0.03)  0.01 (0.06) -0.00 (0.04) 0.06 (0.03)
Reg 28Min  0.04 (0.04)  0.20 (0.03)  0.04 (0.05) -0.02 (0.05) 0.09 (0.04)
Reg 30 -0.03 (0.04) 0.02 (0.03) 0.03 (0.03) 0.01 (0.03) 0.01 (0.02)
Reg 31 0.02 (0.04) 0.03 (0.02) 0.02 (0.05) 0.02 (0.03) 0.02 (0.02)
Reg 32 0.00 (0.03) 0.11 (0.02) -0.01 (0.02) -0.05 (0.03) 0.02 (0.02)
Reg 34 -0.09 (0.03) 0.05 (0.03) -0.09 (0.04) -0.00 (0.04) -0.03 (0.02)
Reg 4 0.13 (0.10) -0.04 (0.05) 0.07 (0.06) 0.08 (0.04) 0.03 (0.03)
Reg 5 -0.05 (0.05) -0.03 (0.04) -0.08 (0.03) -0.12 (0.04) -0.07 (0.02)
Reg 6 -0.04 (0.04) -0.05 (0.04) 0.08 (0.02) 0.02 (0.04) 0.00 (0.02)
Reg 8 -0.06 (0.05) -0.10 (0.06) -0.11 (0.04) -0.03 (0.04) -0.08 (0.02

)
Reg 9 -0.07 (0.05) -0.03 (0.05) -0.13 (0.05) -0.11 (0.05) -0.08 (0.03)

Notes: This Table shows a regression of distance to city center against a variety of
regulatory measures. We subset to within 100 miles of the center of a metropolitan
area which accounts for 3,605 observations in our sample. The dependent variable is
log distance to metro center. A positive coefficient indicates that the variable increases
with log distance from the metro center and a negative coefficient means that the
variable decreases with log distance from the metro center. See Appendix Table A8
for full definitions of zoning questions. Standard errors are shown in parentheses. We
cluster standard errors at the metro level and include metro fixed effects.
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Table A11l: Historical Determinants of Minimum Lot Size Gradients

Regional Slopes (1) (2) (3) (4) (5) (6) (7) (8)
Midwest 85.19 7937  28.19 93.13 7231 8345 1290  82.36
(24.01) (23.05) (21.97) (31.32) (27.86) (24.79) (23.24) (33.02)
Northeast 345.2 3587  205.6  321.8 330.6  351.1 2209 1545
(44.42) (42.69) (44.12) (47.35) (43.67) (45.39) (42.63) (51.48)
South 6.283 2912  -7.213 -1.022 10.15 1991 -11.41 2.300
(26.41) (26.14) (27.52) (34.01) (29.14) (30.93) (25.97) (40.64)
West -5.160  -1.264 -10.50  9.998  5.697  0.226  -31.51  7.588
(10.45) (12.95) (12.07) (13.44) (14.46) (12.82) (14.07) (15.30)
Controls
Nearest Metro v v
Density x Nearest Metro v v
Foreign Born x Nearest Metro v v
Owner-occupied x Nearest Metro v v
Manufacturing x Nearest Metro v v
Manufacturing x Density v v
N 3,353 3,344 3,344 3,344 3,344 3,344 3,344 3,344
R-squared 0.136  0.248  0.329 0.263  0.267 0.266  0.288  0.371

Notes: This table shows regional variation in minimum lot size gradients by distance from metropolitan centers, using
municipalities within 50 miles of a metro. The dependent variable is the lowest residential minimum lot size requirement
(sq. ft.). Column (1) reports baseline regional slopes; subsequent columns add controls: nearest metro FE (2), metro
FE x 1940 density (3), metro FE x 1940 foreign-born share (4), metro FE x 1940 manufacturing share of county

employment (6), 1940 manufacturing share x 1940 density (7), and all controls (8).

distance.

Results are robust to using log



B Appendix: LLM Replicability

LLMs responses are not fully deterministic and so the results of this study cannot be
completely replicated for several reasons. First, LLMs sample tokens from a probabil-
ity distribution leading to variation in responses to the same query across iterations.
Second, the GPT-4 class of models that we use in this study follow a Mixture-of-
Experts (MoE) architecture (see here and here for further details). This means that
the specific expert that an LLM query gets routed to varies across API calls depending
on supply/demand of experts. In turn, this implies that the underlying probability
distribution that tokens are sampled from may change from one query call to the
next, depending on the availability of experts. Moreover, OpenAl’s models are closed
source so there may exist other sources of randomness across API calls that we cannot
explain.

One potential way to increase replicability is to request multiple responses from
the LLM and then aggregate the answers by majority rule, an ensemble approach.
Previous research has also found that ensemble methods can greatly improve LLM
performance (Li et al., 2024).

With the OpenAl API there are two ways to ensemble API calls. The first way is
to request multiple chat completions for a given query (by setting the API parameter
n > 1). This effectively samples the distribution of tokens several times. This method
is also cost effective because OpenAl only charges the user once for the input tokens
regardless of how many iterations of output tokens are requested. However, this
approach fails to sample from the distribution of potential experts or other potential
sources of variation, for example the hardware of the server in which the LLM was
run. A more costly approach is to separately query the LLM for each of the ensemble
queries paying for both the input and output tokens used in each call. This second
approach more broadly samples from the various sources of randomness for an LLM
response.

We measure replicability with two measures in this analysis. Both measures av-
erage pairwise matching rates. We compare the final structured answer from a given
LLM query across multiple API calls for all pairs (n choose 2), and take the ratio
of the number of pairs that match to the total number of pairs. We call this ratio
a consistency score. We measure both internal consistency, scores from requesting

multiple chat completions for a given query, and external consistency, scores from
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comparing separate API calls.

We confirm that lower temperatures create more deterministic responses, even
after ensembling. In Table Bl, we compare temperatures of 0, 0.5, and 1 (lower
temperatures should mean more deterministic responses). We use a random sample
of 30 municipalities from our national sample and use two questions, a binary one
(whether there are permits caps or project phasing) and a continuous one (how many
districts there are). For each specification we run the model five times, each time
requesting 10 chat completions. We find that lower temperature models are more
internally consistent, especially for the continuous question, and have a lower variance
of internal consistency. After aggregating responses, we find that external consistency
scores are fairly similar for the binary question, but still higher for the continuous
one and with lower variance. We also do not find evidence that including a random
seed makes responses more deterministic.

We next show in Figure B1 that external consistency grows with ensemble size,
especially for the continuous question. This suggests that answers begin to stabilize
at larger ensemble sizes, though not fully. We still find that at least five percent of
pairwise comparisons do not match even with ensemble sizes of 10 and a temperature
of 0. We also find that the zero temperature specification already begins at a fairly
high level of external consistency even with an ensemble size of 1.

We separately found that internal consistency was more predictive of external
consistency for higher-temperature models than for lower-temperature ones. Larger
ensemble sizes did not improve accuracy, and internal consistency was only weakly
related to accuracy, mainly for the higher-temperature model.

We suggest researchers consider one of two specifications. First, a low temper-
ature single shot approach. This approach is cost effective by only requesting one
chat completion, has a high degree of external consistency, and is straightforward to
explain. If a researcher wants to use an ensemble approach then we suggest using
a high temperature model with an ensemble size of at least five. High temperature
ensemble models have a high degree of external consistency and have informative
internal consistency scores for both predicting external consistency and accuracy. We
choose to use the first approach in this paper for the higher external consistency, cost

savings, and for simplicity.
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Table B1: Internal and External Consistency Varying Temperature and Seed

External Consistency | Internal Consistency
Mean Variance Mean Variance
Question Temperature Seed
0 No 0.91 0.05 0.9 0.05
) Yes 0.89 0.04 0.9 0.04
Qoutinuous: 755 No 0.83 0.0 0.68 0.1
umber of
Districts Yes 0.8 0.11 0.67 0.1
1 No 0.75 0.11 0.61 0.1
Yes 0.78 0.11 0.64 0.1
0 No 0.93 0.03 0.96 0.02
Binary: Yes 0.92 0.03 0.95 0.02
Whether 0.5 No 0.93 0.03 0.88 0.04
Permit Caps Yes 0.9 0.05 0.89 0.04
or Phasing 7 No 0.91 0.04 0.88 0.04
Yes 0.92 0.04 0.86 0.04

Figure B1: External Consistency vs. Ensemble Size
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C Appendix: Question Details

This appendix provides detailed information about each question used in the study.
Each question is presented with its original phrasing by the Pioneer Institute, the text
that we embed for the question, background information and assumptions, question
type, and the rephrased question that the language model sees. For some questions,
we also include a value that triggers double-checking if the model’s answer does not
match it, along with the rephrased question used for double-checking and the key-
words used to build context during the double-checking process. Additionally, certain

questions involve subtasks, which are described in detail.

System Prompts for Each Question Type

We use a system prompt to guide the LLM in how to respond. Part of the system
prompt includes details on how to structure the response, so we vary the exact system
prompt by question type.

Numerical Questions: "You are a municipal zoning ordinance expert. Use the
following context which follows 'Context: ’ from a municipal ordinance about zoning
laws to answer the question which follows 'Question: . You think step by step and
justify each step with explanations and evidence from the context. At the end of your
argument, you explicitly state your answer in the format of "ANSWER: 7 followed by
a number or ’I DON’T KNOW’."

Binary Questions: "You are a municipal zoning ordinance expert. You use the
following context which follows ’Context: ° from a municipal ordinance to answer

)

the question which follows 'Question: °. You first review the background information
on the question following ’Background Information on Question:’ and treat it as
additional instructions. You assume that the context includes all of the relevant legal
information for the question. You review the context thoroughly for evidence to answer
the question. When you cannot find any relevant information in the context, you
realize that the town does not have relevant laws for the question and you reference
the question background for how to handle this situation. You think step by step and
Justify each step with explanations and evidence from the context. At the end of your
argument, you review what the answer should be and then explicitly state your answer
in the format of "ANSWER: ~ and then one of "YES’, 'NO’, or ’I DON’T KNOW’."

Lot Size Questions: "You are a municipal zoning ordinance expert. Use the follow-
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ing context which follows 'Context: ~ from a municipal ordinance about zoning laws
to answer the question which follows 'Question: . Refer to the question background
section for detailed instructions on how to answer the question. You think step by step
and justify each step with explanations and evidence from the context. At the end of
your answer, you say 'ANSWER:" and then reply with a CSV format with a column
for ’District Name’, "Minimum Lot Size’, "Unit’, and perhaps more depending on the

question background. Ensure that you only include one row per district.”

Example Question Details

Question Phrased by Pioneer: Are apartments above commercial (mixed use)
allowed in any district?

Question Text That We Embed: Are apartments above commercial (mixed use)
allowed in any district?

Question Background and Assumptions: Zoning bylaws and ordinances in var-
ious municipalities often contain provisions for combining residential dwellings with
commercial uses such as retail or office spaces, creating mixed-use developments.
While some zoning regulations explicitly allow multi-family housing and retail to co-
exist within the same district, they may not clarify whether these uses can share
the same building, leaving this to be determined in practice. Certain municipalities
explicitly permit "combined dwelling/retail" configurations in their use regulation ta-
bles, sometimes noting that any uses allowed within the same district can occupy the
same building. Additionally, detailed provisions for mixed-use are facilitated through
special zoning arrangements like overlay districts (e.g., mixed use district, downtown
overlay, or planned unit development) or conversion projects, such as transforming
former mills to accommodate both retail and housing. However, it’s important to
note that some references to "mixed use" may actually pertain to commercial and
industrial combinations, excluding residential components. If you cannot find any
reference to residential and commercial uses in the same building within the context
then you assume that the answer is 'NO’.

Question Type: Binary

Rephrased Question the LLM Sees: Is a combination of commercial and resi-

dential uses in the same building or structure allowed in any zoning district?
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D Appendix: Comparison With Wharton Study

The Wharton Residential Land Use Regulation Index (WRLURI) is a survey-based
measure of local housing market regulations. In this section we compare our study
to the 2018 version of the index (Gyourko et al., 2021). The survey was administered
through the International City Managers Association (ICMA) to its 10,949 member
municipalities at the time, receiving 2,825 responses for a response rate of 25.8%.
In Table D1, we compare our each datasets coverage. Our analysis reveals superior
coverage across the distribution of various demographic and housing characteristic
variables. We especially have greater coverage for low population, low white share,
high college share, and high median home value local governments.

In Panel A of Table D2, we compare question level responses for two questions
which overlap studies: affordable housing mandates and minimum lot sizes. Our mea-
sure of affordable housing shows a substantial correlation of 0.38 with the Wharton
measure. For minimum lot size requirements, we find smaller but meaningful correla-
tions ranging from 0.18 to 0.37 across different size categories. We next compare the
accuracy of each study for the highest minimum lot size by benchmarking responses
against independently sourced geographic data from Massachusetts GIS in Panel B.
Our approach achieves an average accuracy rate of 77%, substantially higher than
Wharton’s 50% accuracy rate when compared against the same ground-truth data.

In Table D3, we examine correlations between our principal components and the
Wharton index. We find positive but somewhat low correlations ranging from 0.11 to
0.33. Besides differences in question-level accuracy, our study exclusively measures
regulation, while WRLURI takes a broader approach. Of its 71 sub-questions, only
56.3% directly measure zoning regulations. The remaining questions cover important
aspects of the housing production process, such as approval processes and timelines
in practice (22.5%), but also questions less relevant to a strictly regulatory index, like
housing market outcomes and market conditions (i.e., whether single-family housing
supply meets demand). This broader scope is reflected in the PCA weights in the
Wharton index. The highest weights are assigned to process-based measures, such
as court involvement, state political involvement, and local political pressure indices,
while direct regulatory measures such as supply restrictions and density restrictions

indices receive the smallest loadings.

15The factor loadings from the principal component analysis used to construct the WRLURI2018
are: Court Involvement Index (0.42), State Political Involvement Index (0.41), Local Political Pres-
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Table D1: Sample Coverage Comparison With Wharton Index

Variable Distribution Percentiles

Variable 0-5th  5-25th  25-50th  50-75th  75-95th  95-100th
Population

Wharton Sample (%) 0.0 0.0 0.0 5.1 25.1 31.6
Our Sample (%) 0.3 0.7 3.8 13.7 40.5 65.3
Difference (p.p.) 0.3 0.7 3.8 8.7 15.4 33.7
Owner-Occupied Share

Wharton Sample (%) 12.2  13.8 8.8 6.1 3.2 0.1
Our Sample (%) 30.9 292 17.7 10.8 5.9 0.2
Difference (p.p.) 18.8 155 8.9 4.7 2.7 0.1
65+ Population Share

Wharton Sample (%) 2.7 9.8 10.5 8.6 4.8 1.4
Our Sample (%) 7.7 21.8 20.5 15.3 10.1 6.0
Difference (p.p.) 5.0 11.9 10.0 6.7 5.3 4.6
Under 18 Share

Wharton Sample (%) 0.4 5.8 10.3 10.5 7.4 1.2
Our Sample (%) 2.6 12.1 19.2 21.3 15.4 4.5
Difference (p.p.) 2.2 6.3 9.0 10.9 8.0 3.3
White Share

Wharton Sample (%) 11.2  15.1 9.8 6.0 1.5 0.0
Our Sample (%) 34.5 358 18.7 8.0 1.7 0.4
Difference (p.p.) 23.3  20.7 8.9 2.1 0.2 0.3
College Share

Wharton Sample (%) 0.2 2.3 6.0 8.9 14.3 16.9
Our Sample (%) 1.4 6.9 11.6 15.6 27.0 46.8
Difference (p.p.) 1.1 4.6 5.6 6.8 12.7 30.0
Median Home Value

Wharton Sample (%) 0.5 3.0 6.5 9.1 13.8 23.3
Our Sample (%) 1.7 6.7 12.1 14.1 27.9 71.4
Difference (p.p.) 1.1 3.7 5.5 5.1 14.1 48.1

sure Index (0.40), Environmental Index (0.28), Approval Delay Index (0.28), Local Project Approval
Index (0.29), Local Zoning Approval Index (0.27), Open Space Index (0.24), Affordable Housing In-
dex (0.27), Local Assembly Index (0.17), Supply Restrictions Index (0.12), and Density Restrictions
Index (0.09).
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Table D2: Correlation With Wharton Index

Panel A: Averages and Correlation For Wharton Questions

Question Wharton Average Our Average Correlation
Affordable Housing 0.20 0.06 0.38
Minimum Lot Size < 1/2 acre 0.50 0.49 0.37

1/2 -1 acre 0.17 0.13 0.18

1 -2 acres 0.12 0.17 0.26

> 2 acres 0.22 0.16 0.27

Panel B: Comparison to Massachusetts GIS Minimum Lot Sizes

Massachusetts < 1/2 - 1- > 9 acres Average
GIS Data 1/2 acre 1 acre 2 acres — Accuracy

Our Model < 1/2 acre 6 2 0 1

1/2 -1 acre 1 12 1 1

1 - 2 acres 0 1 23 2

> 2 acres 1 0 4 8

Percent Correct 75% 80% 82% 67% 7%
Wharton < 1/2 acre 3 3 1 0

1/2 -1 acre 4 6 7 0

1 - 2 acres 0 4 13 2

> 2 acres 1 2 7 10

Percent Correct 38% 40%  46% 83% 50%

Notes: The sample overlap is 1,171 municipalities. We drop municipalities without
minimum lot size requirements. Affordable housing refers only to mandates, not
incentives, and the minimum lot size questions refers only to residential districts.
Massachusetts GIS data comes from MassGIS. To find the highest residential min
lot size from MassGIS we first drop districts with missing/no min lot size info and
then drop districts not flagged as single family zoned.

Table D3: Index Level Wharton Correlations

Wharton Index PC 1 PC 2 Overall Index
Wharton Index 1.00 0.33 0.11 0.22
PC1 0.33 1.00 0.07 0.36
PC 2 0.11 0.07 1.00 0.74
Overall Index 0.22 0.36 0.74 1.00

The Overall Index sums the z-scores of all zoning questions.
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E Appendix: Economic Model of Housing Regula-

tion and Municipal Zoning

This appendix provides a detailed exposition of a model used to analyze municipal
zoning regulations, household location choices, and government policy. The model
combines a spatial equilibrium framework with non-cooperative local government op-
timization to explain the key facts around housing production, choice of regulations,

and socio-economic sorting which we observe in our key facts.

E1 Model Setup

Agents and Locations: To capture the key socio-economic differences among
agents, we define households as of two types: low productivity (L) and high pro-
ductivity (H), earning wages w” and w¥, respectively). These agents decide to live
in one of two zones, reflecting the key spatial differences within urban areas as either
a city core ¢ and a suburb s, which are differentiated by distinct amenities (., av)
and regulatory environments. 7, = NT’H is therefore the share of high productivity
workers in each zone. Denote w; = w!’ - n; + wk - (1 — n;) as the effective wage, and

N, = wk - NE +wH - NI as the effective population.

Government Structure: Local governments within each zone i € {c, s} levy a
homogeneous wage tax 7 and differentiated housing tax ¢;. Governments produce
public services s; using labor G;, paid for by low productivity workers, and maximize

net revenue.

Housing Market: The housing market clears through spatial sorting of workers.
Housing rents r; in each region are upward sloping and depend on local population
density:

r; =7 + B - log(NF - hE + N . pH)

where 7; is the baseline rent fixed in each region, 3; > 0 governs the supply

elasticity, and N; is the population of type j in zone i.
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E2 Household Problem

Households maximize utility by choosing consumption (c¢), housing (h), and location

(choice of ). The utility function for a household of type j in zone i is:

Ul = mz}xlxylogc + (1 =) log h + a; — log(N;) + log(s;)

subject to the budget constraint:

c+h-ri=(1-7) w.

Utility in this framework is decreasing in local population (N;) due to congestion,

and increasing in public services s;. Housing demand in this framework satisfies:

(1 =) = 7wy

hi:

E3 Government Problem

Local governments maximize net revenue:

Jnax [T+ (1 —7)-t] - (wh - N} 4w - NF) — wh - log(G;),

2

subject to a production function on public services:

Si =i eXP(Gz’)7

a requirement on minimum housing consumption, which corresponds to exclusion-

ary zoning:

a population constraint:

NF + N = N;

and a balanced budget requirement:
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The two key government regulatory policies are the choice of housing taxes t;,
which corresponds to value capture or the first principal component, and h;, a min-
imum housing requirement, which corresponds to exclusionary zoning and the sec-
ond principal component. Governments in both zones choose regulations in a non-

cooperative way independent of the other jurisdiction.

E4 Equilibrium and Sorting

The key condition for market clearing is that total population satisfies

N.+ Ny =N

for each household type.
In spatial equilibrium, households sort across zones until they are indifferent,

resulting in the following condition:

SC TC ]-+tc Nc
o — g +log 2 = (1 —~) |log -% +1 log —<. 2
[ Oé]+0gss (1—=7) ogm+og1+t5 +0gNs (2)

In other words, the relative benefit of being in one zone instead of the other (based
on local baseline amenity and government services) is equal to the additional costs
(taxes and congestion costs). We can also substitute in the government production

function and rewrite this as:

Te 1+t N,
— + 1 —1 + — =(1-— log =¢ +1 log —<.
[ — ] + [log . — log ] + [G. — G4] = ( ) {og - + log 1 —{—tJ + log N

Exclusionary Zoning (h;) This regulatory choice is binding when raising h;) raises
revenue via the sorting of high productivity households:
ar I3 ow

_( d l on; +T377z’

or;
AN; - [t b; + Niti=——| | > 0.
} + { ri + TW; + 8]\71}) 0

Value Capture (t;) This regulatory choice is optimal when increased tax revenue

offsets population loss:

~  ON;

84



E5 Existence and Uniqueness of Solution

Solution for Value Capture To ensure the existence of an equilibrium, we start
from the assumption that the government’s objective function is non-negative, as
governments always have the alternative of providing no public services, thereby in-
curring no cost. Hence, the optimal government service provision (G;) must satisfy
the first-order conditions rather than merely binding the budget constraint.

Under symmetric conditions, spatial equilibrium in equation (2) requires that the
ratio of government services between the city core and the suburb (log(s?/s¥)) equals
the ratio of their productivity parameters (log(7./7s). This reduces equilibrium deter-
mination to solving the household indifference condition for population distribution
(N7), given that the left-hand side of equation (2) is constant and the right-hand side
increases strictly with city core population (N.). This yields a unique solution for
N, implying unique equilibrium allocations for government services G and G=.

Specifically, the unique equilibrium holds under the condition d(RHS)/dN.- N} >
1 and d(RHS)/dN,. - Nf > 1. If this condition fails, the equilibrium does not exist.
However, because d(RHS)/dN, consistently exceeds 1/N,. + 1/Ny, a unique equilib-

rium generally exists.

Solution for Exclusionary Zoning When examining existence under exclusion-
ary zoning conditions, the equilibrium structure changes. Exclusionary zoning man-
dates imply all low-type households leave the zone that enforces such regulations.
The household indifference condition thus applies solely to high-type households, as
low-type households always prefer the non-exclusionary zone. Being constrained by
exclusionary regulations imposes utility costs on low-type households, effectively ex-
cluding them from suburbs. In this scenario, equilibrium again depends on solving
the household indifference condition (equation (2)) specifically for high-type house-
holds, confirming the existence of at most one internal equilibrium solution for the
share of high-type households (1*)). If such an internal equilibrium does not exist—
meaning the maximum utility difference between zones remains insufficient to attract
high-type households—the outcome defaults to a corner solution: the city core is fully

populated by low-type workers, and the suburb exclusively by high-type workers.
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